Le Fang


2020

pdf
Surprisal Predicts Code-Switching in Chinese-English Bilingual Text
Jesús Calvillo | Le Fang | Jeremy Cole | David Reitter
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Why do bilinguals switch languages within a sentence? The present observational study asks whether word surprisal and word entropy predict code-switching in bilingual written conversation. We describe and model a new dataset of Chinese-English text with 1476 clean code-switched sentences, translated back into Chinese. The model includes known control variables together with word surprisal and word entropy. We found that word surprisal, but not entropy, is a significant predictor that explains code-switching above and beyond other well-known predictors. We also found sentence length to be a significant predictor, which has been related to sentence complexity. We propose high cognitive effort as a reason for code-switching, as it leaves fewer resources for inhibition of the alternative language. We also corroborate previous findings, but this time using a computational model of surprisal, a new language pair, and doing so for written language.

2019

pdf
Implicit Deep Latent Variable Models for Text Generation
Le Fang | Chunyuan Li | Jianfeng Gao | Wen Dong | Changyou Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Deep latent variable models (LVM) such as variational auto-encoder (VAE) have recently played an important role in text generation. One key factor is the exploitation of smooth latent structures to guide the generation. However, the representation power of VAEs is limited due to two reasons: (1) the Gaussian assumption is often made on the variational posteriors; and meanwhile (2) a notorious “posterior collapse” issue occurs. In this paper, we advocate sample-based representations of variational distributions for natural language, leading to implicit latent features, which can provide flexible representation power compared with Gaussian-based posteriors. We further develop an LVM to directly match the aggregated posterior to the prior. It can be viewed as a natural extension of VAEs with a regularization of maximizing mutual information, mitigating the “posterior collapse” issue. We demonstrate the effectiveness and versatility of our models in various text generation scenarios, including language modeling, unaligned style transfer, and dialog response generation. The source code to reproduce our experimental results is available on GitHub.