MultiDoc2Dial presents an important challenge on modeling dialogues grounded with multiple documents. This paper proposes a pipeline system of “retrieve, re-rank, and generate”, where each component is individually optimized. This enables the passage re-ranker and response generator to fully exploit training with ground-truth data. Furthermore, we use a deep cross-encoder trained with localized hard negative passages from the retriever. For the response generator, we use grounding span prediction as an auxiliary task to be jointly trained with the main task of response generation. We also adopt a passage dropout and regularization technique to improve response generation performance. Experimental results indicate that the system clearly surpasses the competitive baseline and our team CPII-NLP ranked 1st among the public submissions on ALL four leaderboards based on the sum of F1, SacreBLEU, METEOR and RougeL scores.
Aspect term extraction aims to extract aspect terms from review texts as opinion targets for sentiment analysis. One of the big challenges with this task is the lack of sufficient annotated data. While data augmentation is potentially an effective technique to address the above issue, it is uncontrollable as it may change aspect words and aspect labels unexpectedly. In this paper, we formulate the data augmentation as a conditional generation task: generating a new sentence while preserving the original opinion targets and labels. We propose a masked sequence-to-sequence method for conditional augmentation of aspect term extraction. Unlike existing augmentation approaches, ours is controllable and allows to generate more diversified sentences. Experimental results confirm that our method alleviates the data scarcity problem significantly. It also effectively boosts the performances of several current models for aspect term extraction.
One of the remaining challenges for aspect term extraction in sentiment analysis resides in the extraction of phrase-level aspect terms, which is non-trivial to determine the boundaries of such terms. In this paper, we aim to address this issue by incorporating the span annotations of constituents of a sentence to leverage the syntactic information in neural network models. To this end, we first construct a constituency lattice structure based on the constituents of a constituency tree. Then, we present two approaches to encoding the constituency lattice using BiLSTM-CRF and BERT as the base models, respectively. We experimented on two benchmark datasets to evaluate the two models, and the results confirm their superiority with respective 3.17 and 1.35 points gained in F1-Measure over the current state of the art. The improvements justify the effectiveness of the constituency lattice for aspect term extraction.