Kumar Shridhar


2022

pdf
Automatic Generation of Socratic Subquestions for Teaching Math Word Problems
Kumar Shridhar | Jakub Macina | Mennatallah El-Assady | Tanmay Sinha | Manu Kapur | Mrinmaya Sachan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.

2021

pdf
Scaling Within Document Coreference to Long Texts
Raghuveer Thirukovalluru | Nicholas Monath | Kumar Shridhar | Manzil Zaheer | Mrinmaya Sachan | Andrew McCallum
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf
End to End Binarized Neural Networks for Text Classification
Kumar Shridhar | Harshil Jain | Akshat Agarwal | Denis Kleyko
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Deep neural networks have demonstrated their superior performance in almost every Natural Language Processing task, however, their increasing complexity raises concerns. A particular concern is that these networks pose high requirements for computing hardware and training budgets. The state-of-the-art transformer models are a vivid example. Simplifying the computations performed by a network is one way of addressing the issue of the increasing complexity. In this paper, we propose an end to end binarized neural network for the task of intent and text classification. In order to fully utilize the potential of end to end binarization, both the input representations (vector embeddings of tokens statistics) and the classifier are binarized. We demonstrate the efficiency of such a network on the intent classification of short texts over three datasets and text classification with a larger dataset. On the considered datasets, the proposed network achieves comparable to the state-of-the-art results while utilizing 20-40% lesser memory and training time compared to the benchmarks.