Kisu Yang


PicTalky: Augmentative and Alternative Communication for Language Developmental Disabilities
Chanjun Park | Yoonna Jang | Seolhwa Lee | Jaehyung Seo | Kisu Yang | Heuiseok Lim
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations

Children with language disabilities face communication difficulties in daily life. They are often deprived of the opportunity to participate in social activities due to their difficulty in understanding or using natural language. In this regard, Augmentative and Alternative Communication (AAC) can be a practical means of communication for children with language disabilities. In this study, we propose PicTalky, which is an AI-based AAC system that helps children with language developmental disabilities to improve their communication skills and language comprehension abilities. PicTalky can process both text and pictograms more accurately by connecting a series of neural-based NLP modules. Additionally, we perform quantitative and qualitative analyses on the modules of PicTalky. By using this service, it is expected that those suffering from language problems will be able to express their intentions or desires more easily and improve their quality of life. We have made the models freely available alongside a demonstration of the web interface. Furthermore, we implemented robotics AAC for the first time by applying PicTalky to the NAO robot.


I Know What You Asked: Graph Path Learning using AMR for Commonsense Reasoning
Jungwoo Lim | Dongsuk Oh | Yoonna Jang | Kisu Yang | Heuiseok Lim
Proceedings of the 28th International Conference on Computational Linguistics

CommonsenseQA is a task in which a correct answer is predicted through commonsense reasoning with pre-defined knowledge. Most previous works have aimed to improve the performance with distributed representation without considering the process of predicting the answer from the semantic representation of the question. To shed light upon the semantic interpretation of the question, we propose an AMR-ConceptNet-Pruned (ACP) graph. The ACP graph is pruned from a full integrated graph encompassing Abstract Meaning Representation (AMR) graph generated from input questions and an external commonsense knowledge graph, ConceptNet (CN). Then the ACP graph is exploited to interpret the reasoning path as well as to predict the correct answer on the CommonsenseQA task. This paper presents the manner in which the commonsense reasoning process can be interpreted with the relations and concepts provided by the ACP graph. Moreover, ACP-based models are shown to outperform the baselines.