Kehui Song


2022

pdf
PM2F2N: Patient Multi-view Multi-modal Feature Fusion Networks for Clinical Outcome Prediction
Ying Zhang | Baohang Zhou | Kehui Song | Xuhui Sui | Guoqing Zhao | Ning Jiang | Xiaojie Yuan
Findings of the Association for Computational Linguistics: EMNLP 2022

Clinical outcome prediction is critical to the condition prediction of patients and management of hospital capacities. There are two kinds of medical data, including time series signals recorded by various devices and clinical notes in electronic health records (EHR), which are used for two common prediction targets: mortality and length of stay. Traditional methods focused on utilizing time series data but ignored clinical notes. With the development of deep learning, natural language processing (NLP) and multi-modal learning methods are exploited to jointly model the time series and clinical notes with different modals. However, the existing methods failed to fuse the multi-modal features of patients from different views. Therefore, we propose the patient multi-view multi-modal feature fusion networks for clinical outcome prediction. Firstly, from patient inner view, we propose to utilize the co-attention module to enhance the fine-grained feature interaction between time series and clinical notes from each patient. Secondly, the patient outer view is the correlation between patients, which can be reflected by the structural knowledge in clinical notes. We exploit the structural information extracted from clinical notes to construct the patient correlation graph, and fuse patients’ multi-modal features by graph neural networks (GNN). The experimental results on MIMIC-III benchmark demonstrate the superiority of our method.

pdf
A Span-based Multimodal Variational Autoencoder for Semi-supervised Multimodal Named Entity Recognition
Baohang Zhou | Ying Zhang | Kehui Song | Wenya Guo | Guoqing Zhao | Hongbin Wang | Xiaojie Yuan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multimodal named entity recognition (MNER) on social media is a challenging task which aims to extract named entities in free text and incorporate images to classify them into user-defined types. However, the annotation for named entities on social media demands a mount of human efforts. The existing semi-supervised named entity recognition methods focus on the text modal and are utilized to reduce labeling costs in traditional NER. However, the previous methods are not efficient for semi-supervised MNER. Because the MNER task is defined to combine the text information with image one and needs to consider the mismatch between the posted text and image. To fuse the text and image features for MNER effectively under semi-supervised setting, we propose a novel span-based multimodal variational autoencoder (SMVAE) model for semi-supervised MNER. The proposed method exploits modal-specific VAEs to model text and image latent features, and utilizes product-of-experts to acquire multimodal features. In our approach, the implicit relations between labels and multimodal features are modeled by multimodal VAE. Thus, the useful information of unlabeled data can be exploited in our method under semi-supervised setting. Experimental results on two benchmark datasets demonstrate that our approach not only outperforms baselines under supervised setting, but also improves MNER performance with less labeled data than existing semi-supervised methods.

pdf
Improving Zero-Shot Entity Linking Candidate Generation with Ultra-Fine Entity Type Information
Xuhui Sui | Ying Zhang | Kehui Song | Baohang Zhou | Guoqing Zhao | Xin Wei | Xiaojie Yuan
Proceedings of the 29th International Conference on Computational Linguistics

Entity linking, which aims at aligning ambiguous entity mentions to their referent entities in a knowledge base, plays a key role in multiple natural language processing tasks. Recently, zero-shot entity linking task has become a research hotspot, which links mentions to unseen entities to challenge the generalization ability. For this task, the training set and test set are from different domains, and thus entity linking models tend to be overfitting due to the tendency of memorizing the properties of entities that appear frequently in the training set. We argue that general ultra-fine-grained type information can help the linking models to learn contextual commonality and improve their generalization ability to tackle the overfitting problem. However, in the zero-shot entity linking setting, any type information is not available and entities are only identified by textual descriptions. Thus, we first extract the ultra-fine entity type information from the entity textual descriptions. Then, we propose a hierarchical multi-task model to improve the high-level zero-shot entity linking candidate generation task by utilizing the entity typing task as an auxiliary low-level task, which introduces extracted ultra-fine type information into the candidate generation task. Experimental results demonstrate the effectiveness of utilizing the ultra-fine entity type information and our proposed method achieves state-of-the-art performance.