Using observed language to understand interpersonal interactions is important in high-stakes decision making. We propose a causal research design for observational (non-experimental) data to estimate the natural direct and indirect effects of social group signals (e.g. race or gender) on speakers’ responses with separate aspects of language as causal mediators. We illustrate the promises and challenges of this framework via a theoretical case study of the effect of an advocate’s gender on interruptions from justices during U.S. Supreme Court oral arguments. We also discuss challenges conceptualizing and operationalizing causal variables such as gender and language that comprise of many components, and we articulate technical open challenges such as temporal dependence between language mediators in conversational settings.
Methods and applications are inextricably linked in science, and in particular in the domain of text-as-data. In this paper, we examine one such text-as-data application, an established economic index that measures economic policy uncertainty from keyword occurrences in news. This index, which is shown to correlate with firm investment, employment, and excess market returns, has had substantive impact in both the private sector and academia. Yet, as we revisit and extend the original authors’ annotations and text measurements we find interesting text-as-data methodological research questions: (1) Are annotator disagreements a reflection of ambiguity in language? (2) Do alternative text measurements correlate with one another and with measures of external predictive validity? We find for this application (1) some annotator disagreements of economic policy uncertainty can be attributed to ambiguity in language, and (2) switching measurements from keyword-matching to supervised machine learning classifiers results in low correlation, a concerning implication for the validity of the index.
Many applications of computational social science aim to infer causal conclusions from non-experimental data. Such observational data often contains confounders, variables that influence both potential causes and potential effects. Unmeasured or latent confounders can bias causal estimates, and this has motivated interest in measuring potential confounders from observed text. For example, an individual’s entire history of social media posts or the content of a news article could provide a rich measurement of multiple confounders.Yet, methods and applications for this problem are scattered across different communities and evaluation practices are inconsistent.This review is the first to gather and categorize these examples and provide a guide to data-processing and evaluation decisions. Despite increased attention on adjusting for confounding using text, there are still many open problems, which we highlight in this paper.
Every fiscal quarter, companies hold earnings calls in which company executives respond to questions from analysts. After these calls, analysts often change their price target recommendations, which are used in equity re- search reports to help investors make deci- sions. In this paper, we examine analysts’ decision making behavior as it pertains to the language content of earnings calls. We identify a set of 20 pragmatic features of analysts’ questions which we correlate with analysts’ pre-call investor recommendations. We also analyze the degree to which semantic and pragmatic features from an earnings call complement market data in predicting analysts’ post-call changes in price targets. Our results show that earnings calls are moderately predictive of analysts’ decisions even though these decisions are influenced by a number of other factors including private communication with company executives and market conditions. A breakdown of model errors indicates disparate performance on calls from different market sectors.
Prevalence estimation is the task of inferring the relative frequency of classes of unlabeled examples in a group—for example, the proportion of a document collection with positive sentiment. Previous work has focused on aggregating and adjusting discriminative individual classifiers to obtain prevalence point estimates. But imperfect classifier accuracy ought to be reflected in uncertainty over the predicted prevalence for scientifically valid inference. In this work, we present (1) a generative probabilistic modeling approach to prevalence estimation, and (2) the construction and evaluation of prevalence confidence intervals; in particular, we demonstrate that an off-the-shelf discriminative classifier can be given a generative re-interpretation, by backing out an implicit individual-level likelihood function, which can be used to conduct fast and simple group-level Bayesian inference. Empirically, we demonstrate our approach provides better confidence interval coverage than an alternative, and is dramatically more robust to shifts in the class prior between training and testing.
Dependency parsing research, which has made significant gains in recent years, typically focuses on improving the accuracy of single-tree predictions. However, ambiguity is inherent to natural language syntax, and communicating such ambiguity is important for error analysis and better-informed downstream applications. In this work, we propose a transition sampling algorithm to sample from the full joint distribution of parse trees defined by a transition-based parsing model, and demonstrate the use of the samples in probabilistic dependency analysis. First, we define the new task of dependency path prediction, inferring syntactic substructures over part of a sentence, and provide the first analysis of performance on this task. Second, we demonstrate the usefulness of our Monte Carlo syntax marginal method for parser error analysis and calibration. Finally, we use this method to propagate parse uncertainty to two downstream information extraction applications: identifying persons killed by police and semantic role assignment.
We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.