Kaize Ding


2021

pdf
Learning to Selectively Learn for Weakly-supervised Paraphrase Generation
Kaize Ding | Dingcheng Li | Alexander Hanbo Li | Xing Fan | Chenlei Guo | Yang Liu | Huan Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have been proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.

2020

pdf
Be More with Less: Hypergraph Attention Networks for Inductive Text Classification
Kaize Ding | Jianling Wang | Jundong Li | Dingcheng Li | Huan Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model – hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.