Juntao Li


2022

pdf
Robust Question Answering against Distribution Shifts with Test-Time Adaption: An Empirical Study
Hai Ye | Yuyang Ding | Juntao Li | Hwee Tou Ng
Findings of the Association for Computational Linguistics: EMNLP 2022

A deployed question answering (QA) model can easily fail when the test data has a distribution shift compared to the training data. Robustness tuning (RT) methods have been widely studied to enhance model robustness against distribution shifts before model deployment. However, can we improve a model after deployment? To answer this question, we evaluate test-time adaptation (TTA) to improve a model after deployment. We first introduce ColdQA, a unified evaluation benchmark for robust QA against text corruption and changes in language and domain. We then evaluate previous TTA methods on ColdQA and compare them to RT methods. We also propose a novel TTA method called online imitation learning (OIL). Through extensive experiments, we find that TTA is comparable to RT methods, and applying TTA after RT can significantly boost the performance on ColdQA. Our proposed OIL improves TTA to be more robust to variation in hyper-parameters and test distributions over time.

pdf
Improving Temporal Generalization of Pre-trained Language Models with Lexical Semantic Change
Zhaochen Su | Zecheng Tang | Xinyan Guan | Lijun Wu | Min Zhang | Juntao Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent research has revealed that neural language models at scale suffer from poor temporal generalization capability, i.e., language model pre-trained on static data from past years performs worse over time on emerging data. Existing methods mainly perform continual training to mitigate such a misalignment. While effective to some extent but is far from being addressed on both the language modeling and downstream tasks. In this paper, we empirically observe that temporal generalization is closely affiliated with lexical semantic change, which is one of the essential phenomena of natural languages. Based on this observation, we propose a simple yet effective lexical-level masking strategy to post-train a converged language model. Experiments on two pre-trained language models, two different classification tasks, and four benchmark datasets demonstrate the effectiveness of our proposed method over existing temporal adaptation methods, i.e., continual training with new data. Our code is available at https://github.com/zhaochen0110/LMLM.

pdf
JANUS: Joint Autoregressive and Non-autoregressive Training with Auxiliary Loss for Sequence Generation
Xiaobo Liang | Lijun Wu | Juntao Li | Min Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Transformer-based autoregressive and non-autoregressive models have played an essential role in sequence generation tasks. The autoregressive model can obtain excellent performance, while the non-autoregressive model brings fast decoding speed for inference. In this paper, we propose JANUS, a Joint Autoregressive and Non-autoregressive training method using aUxiliary losS to enhance the model performance in both AR and NAR manner simultaneously and effectively alleviate the problem of distribution discrepancy.Further, we pre-train BART with JANUS on a large corpus with minimal cost (16 GPU days) and make the BART-JANUS capable of non-autoregressive generation, demonstrating that our approach can transfer the AR knowledge to NAR. Empirically, we show our approach and BART-JANUS can achieve significant improvement on multiple generation tasks, including machine translation and GLGE benchmarks. Our code is available at Github.

pdf
SelfMix: Robust Learning against Textual Label Noise with Self-Mixup Training
Dan Qiao | Chenchen Dai | Yuyang Ding | Juntao Li | Qiang Chen | Wenliang Chen | Min Zhang
Proceedings of the 29th International Conference on Computational Linguistics

The conventional success of textual classification relies on annotated data, and the new paradigm of pre-trained language models (PLMs) still requires a few labeled data for downstream tasks. However, in real-world applications, label noise inevitably exists in training data, damaging the effectiveness, robustness, and generalization of the models constructed on such data. Recently, remarkable achievements have been made to mitigate this dilemma in visual data, while only a few explore textual data. To fill this gap, we present SelfMix, a simple yet effective method, to handle label noise in text classification tasks. SelfMix uses the Gaussian Mixture Model to separate samples and leverages semi-supervised learning. Unlike previous works requiring multiple models, our method utilizes the dropout mechanism on a single model to reduce the confirmation bias in self-training and introduces a textual level mixup training strategy. Experimental results on three text classification benchmarks with different types of text show that the performance of our proposed method outperforms these strong baselines designed for both textual and visual data under different noise ratios and noise types. Our anonymous code is available at https://github.com/noise-learning/SelfMix.

pdf
Gated Mechanism Enhanced Multi-Task Learning for Dialog Routing
Ziming Huang | Zhuoxuan Jiang | Ke Wang | Juntao Li | Shanshan Feng | Xian-Ling Mao
Proceedings of the 29th International Conference on Computational Linguistics

Currently, human-bot symbiosis dialog systems, e.g. pre- and after-sales in E-commerce, are ubiquitous, and the dialog routing component is essential to improve the overall efficiency, reduce human resource cost and increase user experience. To satisfy this requirement, existing methods are mostly heuristic and cannot obtain high-quality performance. In this paper, we investigate the important problem by thoroughly mining both the data-to-task and task-to-task knowledge among various kinds of dialog data. To achieve the above target, we propose a comprehensive and general solution with multi-task learning framework, specifically including a novel dialog encoder and two tailored gated mechanism modules. The proposed Gated Mechanism enhanced Multi-task Model (G3M) can play the role of hierarchical information filtering and is non-invasive to the existing dialog systems. Experiments on two datasets collected from the real world demonstrate our method’s effectiveness and the results achieve the state-of-the-art performance by relatively increasing 8.7%/11.8% on RMSE metric and 2.2%/4.4% on F1 metric.

2021

pdf
Enhancing the Open-Domain Dialogue Evaluation in Latent Space
Zhangming Chan | Lemao Liu | Juntao Li | Haisong Zhang | Dongyan Zhao | Shuming Shi | Rui Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Learning to Organize a Bag of Words into Sentences with Neural Networks: An Empirical Study
Chongyang Tao | Shen Gao | Juntao Li | Yansong Feng | Dongyan Zhao | Rui Yan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Sequential information, a.k.a., orders, is assumed to be essential for processing a sequence with recurrent neural network or convolutional neural network based encoders. However, is it possible to encode natural languages without orders? Given a bag of words from a disordered sentence, humans may still be able to understand what those words mean by reordering or reconstructing them. Inspired by such an intuition, in this paper, we perform a study to investigate how “order” information takes effects in natural language learning. By running comprehensive comparisons, we quantitatively compare the ability of several representative neural models to organize sentences from a bag of words under three typical scenarios, and summarize some empirical findings and challenges, which can shed light on future research on this line of work.

2020

pdf
Plan-CVAE: A Planning-based Conditional Variational Autoencoder for Story Generation
Lin Wang | Juntao Li | Rui Yan | Dongyan Zhao
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Story generation is a challenging task of automatically creating natural languages to describe a sequence of events, which requires outputting text with not only a consistent topic but also novel wordings. Although many approaches have been proposed and obvious progress has been made on this task, there is still a large room for improvement, especially for improving thematic consistency and wording diversity. To mitigate the gap between generated stories and those written by human writers, in this paper, we propose a planning-based conditional variational autoencoder, namely Plan-CVAE, which first plans a keyword sequence and then generates a story based on the keyword sequence. In our method, the keywords planning strategy is used to improve thematic consistency while the CVAE module allows enhancing wording diversity. Experimental results on a benchmark dataset confirm that our proposed method can generate stories with both thematic consistency and wording novelty, and outperforms state-of-the-art methods on both automatic metrics and human evaluations.

pdf
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
Hai Ye | Qingyu Tan | Ruidan He | Juntao Li | Hwee Tou Ng | Lidong Bing
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Adapting pre-trained language models (PrLMs) (e.g., BERT) to new domains has gained much attention recently. Instead of fine-tuning PrLMs as done in most previous work, we investigate how to adapt the features of PrLMs to new domains without fine-tuning. We explore unsupervised domain adaptation (UDA) in this paper. With the features from PrLMs, we adapt the models trained with labeled data from the source domain to the unlabeled target domain. Self-training is widely used for UDA, and it predicts pseudo labels on the target domain data for training. However, the predicted pseudo labels inevitably include noise, which will negatively affect training a robust model. To improve the robustness of self-training, in this paper we present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs, in which PrLM features are self-distilled into a feature adaptation module and the features from the same class are more tightly clustered. We further extend CFd to a cross-language setting, in which language discrepancy is studied. Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training in cross-domain and cross-language settings.

2019

pdf
Bridging the Gap: Improve Part-of-speech Tagging for Chinese Social Media Texts with Foreign Words
Dingmin Wang | Meng Fang | Yan Song | Juntao Li
Proceedings of the 5th Workshop on Semantic Deep Learning (SemDeep-5)

pdf
Are Training Samples Correlated? Learning to Generate Dialogue Responses with Multiple References
Lisong Qiu | Juntao Li | Wei Bi | Dongyan Zhao | Rui Yan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Due to its potential applications, open-domain dialogue generation has become popular and achieved remarkable progress in recent years, but sometimes suffers from generic responses. Previous models are generally trained based on 1-to-1 mapping from an input query to its response, which actually ignores the nature of 1-to-n mapping in dialogue that there may exist multiple valid responses corresponding to the same query. In this paper, we propose to utilize the multiple references by considering the correlation of different valid responses and modeling the 1-to-n mapping with a novel two-step generation architecture. The first generation phase extracts the common features of different responses which, combined with distinctive features obtained in the second phase, can generate multiple diverse and appropriate responses. Experimental results show that our proposed model can effectively improve the quality of response and outperform existing neural dialogue models on both automatic and human evaluations.

pdf
Modeling Personalization in Continuous Space for Response Generation via Augmented Wasserstein Autoencoders
Zhangming Chan | Juntao Li | Xiaopeng Yang | Xiuying Chen | Wenpeng Hu | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Variational autoencoders (VAEs) and Wasserstein autoencoders (WAEs) have achieved noticeable progress in open-domain response generation. Through introducing latent variables in continuous space, these models are capable of capturing utterance-level semantics, e.g., topic, syntactic properties, and thus can generate informative and diversified responses. In this work, we improve the WAE for response generation. In addition to the utterance-level information, we also model user-level information in latent continue space. Specifically, we embed user-level and utterance-level information into two multimodal distributions, and combine these two multimodal distributions into a mixed distribution. This mixed distribution will be used as the prior distribution of WAE in our proposed model, named as PersonaWAE. Experimental results on a large-scale real-world dataset confirm the superiority of our model for generating informative and personalized responses, where both automatic and human evaluations outperform state-of-the-art models.

pdf
Stick to the Facts: Learning towards a Fidelity-oriented E-Commerce Product Description Generation
Zhangming Chan | Xiuying Chen | Yongliang Wang | Juntao Li | Zhiqiang Zhang | Kun Gai | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Different from other text generation tasks, in product description generation, it is of vital importance to generate faithful descriptions that stick to the product attribute information. However, little attention has been paid to this problem. To bridge this gap we propose a model named Fidelity-oriented Product Description Generator (FPDG). FPDG takes the entity label of each word into account, since the product attribute information is always conveyed by entity words. Specifically, we first propose a Recurrent Neural Network (RNN) decoder based on the Entity-label-guided Long Short-Term Memory (ELSTM) cell, taking both the embedding and the entity label of each word as input. Second, we establish a keyword memory that stores the entity labels as keys and keywords as values, and FPDG will attend to keywords through attending to their entity labels. Experiments conducted a large-scale real-world product description dataset show that our model achieves the state-of-the-art performance in terms of both traditional generation metrics as well as human evaluations. Specifically, FPDG increases the fidelity of the generated descriptions by 25%.

2018

pdf
Generating Classical Chinese Poems via Conditional Variational Autoencoder and Adversarial Training
Juntao Li | Yan Song | Haisong Zhang | Dongmin Chen | Shuming Shi | Dongyan Zhao | Rui Yan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

It is a challenging task to automatically compose poems with not only fluent expressions but also aesthetic wording. Although much attention has been paid to this task and promising progress is made, there exist notable gaps between automatically generated ones with those created by humans, especially on the aspects of term novelty and thematic consistency. Towards filling the gap, in this paper, we propose a conditional variational autoencoder with adversarial training for classical Chinese poem generation, where the autoencoder part generates poems with novel terms and a discriminator is applied to adversarially learn their thematic consistency with their titles. Experimental results on a large poetry corpus confirm the validity and effectiveness of our model, where its automatic and human evaluation scores outperform existing models.