Grammatical Error Correction (GEC), a task of Natural Language Processing (NLP), is challenging for underepresented languages. This issue is most prominent in languages other than English. This paper addresses the issue of data and system sparsity for GEC purposes in the modern Greek Language. Following the most popular current approaches in GEC, we develop and test an MT5 multilingual text-to-text transformer for Greek. To our knowledge this the first attempt to create a fully-fledged GEC model for Greek. Our evaluation shows that our system reaches up to 52.63% F0.5 score on part of the Greek Native Corpus (GNC), which is 16% below the winning system of the BEA-19 shared task on English GEC. In addition, we provide an extended version of the Greek Learner Corpus (GLC), on which our model reaches up to 22.76% F0.5. Previous versions did not include corrections with the annotations which hindered the potential development of efficient GEC systems. For that reason we provide a new set of corrections. This new dataset facilitates an exploration of the generalisation abilities and robustness of our system, given that the assessment is conducted on learner data while the training on native data.
This paper contributes to studying relationships between Japanese topography and places featured in early modern landscape prints, so-called ukiyo-e or ‘pictures of the floating world’. The printed inscriptions on these images feature diverse place-names, both man-made and natural formations. However, due to the corpus’s richness and diversity, the precise nature of artistic mediation of the depicted places remains little understood. In this paper, we explored a new analytical approach based on the macroanalysis of images facilitated by Natural Language Processing technologies. This paper presents a small dataset with inscriptions on prints that have been annotated by an art historian for included place-name entities. Our dataset is released for public use. By fine-tuning and applying a Japanese BERT-based Name Entity Recogniser, we provide a use-case of a macroanalysis of a visual dataset that is hosted by the digital database of the Art Research Center at the Ritsumeikan University, Kyoto. Our work studies the relationship between topography and its visual renderings in early modern Japanese ukiyo-e landscape prints, demonstrating how an art historian’s work can be improved with Natural Language Processing toward distant viewing of visual datasets. We release our dataset and code for public use: https://github.com/connalia/ukiyo-e_meisho_nlp
Today classicists are provided with a great number of digital tools which, in turn, offer possibilities for further study and new research goals. In this paper we explore the idea that old Greek handwriting can be machine-readable and consequently, researchers can study the target material fast and efficiently. Previous studies have shown that Handwritten Text Recognition (HTR) models are capable of attaining high accuracy rates. However, achieving high accuracy HTR results for Greek manuscripts is still considered to be a major challenge. The overall aim of this paper is to assess HTR for old Greek manuscripts. To address this statement, we study and use digitized images of the Oxford University Bodleian Library Greek manuscripts. By manually transcribing 77 images, we created and present here a new dataset for Handwritten Paleographic Greek Text Recognition. The dataset instances were organized by establishing as a leading factor the century to which the manuscript and hence the image belongs. Experimenting then with an HTR model we show that the error rate depends on the century of the image.
Sentiment analysis studies are focused more on online customer reviews or social media, and less on literary studies. The problem is greater for ancient languages, where the linguistic expression of sentiments may diverge from modern linguistic forms. This work presents the outcome of a sentiment annotation task of the first Book of Iliad, an ancient Greek poem. The annotators were provided with verses translated into modern Greek and they annotated the perceived emotions and sentiments verse by verse. By estimating the fraction of annotators that found a verse as belonging to a specific sentiment class, we model the poem’s perceived sentiment as a multi-variate time series. By experimenting with a state of the art deep learning masked language model, pre-trained on modern Greek and fine-tuned to estimate the sentiment of our data, we registered a mean squared error of 0.063. This low error indicates that sentiment estimators built on our dataset can potentially be used as mechanical annotators, hence facilitating the distant reading of Homeric text. Our dataset is released for public use.
We study the task of toxic spans detection, which concerns the detection of the spans that make a text toxic, when detecting such spans is possible. We introduce a dataset for this task, ToxicSpans, which we release publicly. By experimenting with several methods, we show that sequence labeling models perform best, but methods that add generic rationale extraction mechanisms on top of classifiers trained to predict if a post is toxic or not are also surprisingly promising. Finally, we use ToxicSpans and systems trained on it, to provide further analysis of state-of-the-art toxic to non-toxic transfer systems, as well as of human performance on that latter task. Our work highlights challenges in finer toxicity detection and mitigation.
Platforms that support online commentary, from social networks to news sites, are increasingly leveraging machine learning to assist their moderation efforts. But this process does not typically provide feedback to the author that would help them contribute according to the community guidelines. This is prohibitively time-consuming for human moderators to do, and computational approaches are still nascent. This work focuses on models that can help suggest rephrasings of toxic comments in a more civil manner. Inspired by recent progress in unpaired sequence-to-sequence tasks, a self-supervised learning model is introduced, called CAE-T5. CAE-T5 employs a pre-trained text-to-text transformer, which is fine tuned with a denoising and cyclic auto-encoder loss. Experimenting with the largest toxicity detection dataset to date (Civil Comments) our model generates sentences that are more fluent and better at preserving the initial content compared to earlier text style transfer systems which we compare with using several scoring systems and human evaluation.
In this paper, we introduce the Greek version of the automatic annotation tool ERRANT (Bryant et al., 2017), which we named ELERRANT. ERRANT functions as a rule-based error type classifier and was used as the main evaluation tool of the systems participating in the BEA-2019 (Bryant et al., 2019) shared task. Here, we discuss grammatical and morphological differences between English and Greek and how these differences affected the development of ELERRANT. We also introduce the first Greek Native Corpus (GNC) and the Greek WikiEdits Corpus (GWE), two new evaluation datasets with errors from native Greek learners and Wikipedia Talk Pages edits respectively. These two datasets are used for the evaluation of ELERRANT. This paper is a sole fragment of a bigger picture which illustrates the attempt to solve the problem of low-resource languages in NLP, in our case Greek.
The Toxic Spans Detection task of SemEval-2021 required participants to predict the spans of toxic posts that were responsible for the toxic label of the posts. The task could be addressed as supervised sequence labeling, using training data with gold toxic spans provided by the organisers. It could also be treated as rationale extraction, using classifiers trained on potentially larger external datasets of posts manually annotated as toxic or not, without toxic span annotations. For the supervised sequence labeling approach and evaluation purposes, posts previously labeled as toxic were crowd-annotated for toxic spans. Participants submitted their predicted spans for a held-out test set and were scored using character-based F1. This overview summarises the work of the 36 teams that provided system descriptions.
User posts whose perceived toxicity depends on the conversational context are rare in current toxicity detection datasets. Hence, toxicity detectors trained on current datasets will also disregard context, making the detection of context-sensitive toxicity a lot harder when it occurs. We constructed and publicly release a dataset of 10k posts with two kinds of toxicity labels per post, obtained from annotators who considered (i) both the current post and the previous one as context, or (ii) only the current post. We introduce a new task, context-sensitivity estimation, which aims to identify posts whose perceived toxicity changes if the context (previous post) is also considered. Using the new dataset, we show that systems can be developed for this task. Such systems could be used to enhance toxicity detection datasets with more context-dependent posts or to suggest when moderators should consider the parent posts, which may not always be necessary and may introduce additional costs.
The Shared Task on Hateful Memes is a challenge that aims at the detection of hateful content in memes by inviting the implementation of systems that understand memes, potentially by combining image and textual information. The challenge consists of three detection tasks: hate, protected category and attack type. The first is a binary classification task, while the other two are multi-label classification tasks. Our participation included a text-based BERT baseline (TxtBERT), the same but adding information from the image (ImgBERT), and neural retrieval approaches. We also experimented with retrieval augmented classification models. We found that an ensemble of TxtBERT and ImgBERT achieves the best performance in terms of ROC AUC score in two out of the three tasks on our development set.
Grammatical Error Correction (GEC) is the task of correcting different types of errors in written texts. To manage this task, large amounts of annotated data that contain erroneous sentences are required. This data, however, is usually annotated according to each annotator’s standards, making it difficult to manage multiple sets of data at the same time. The recently introduced Error Annotation Toolkit (ERRANT) tackled this problem by presenting a way to automatically annotate data that contain grammatical errors, while also providing a standardisation for annotation. ERRANT extracts the errors and classifies them into error types, in the form of an edit that can be used in the creation of GEC systems, as well as for grammatical error analysis. However, we observe that certain errors are falsely or ambiguously classified. This could obstruct any qualitative or quantitative grammatical error type analysis, as the results would be inaccurate. In this work, we use a sample of the FCE coprus (Yannakoudakis et al., 2011) for secondary error type annotation and we show that up to 39% of the annotations of the most frequent type should be re-classified. Our corrections will be publicly released, so that they can serve as the starting point of a broader, collaborative, ongoing correction process.
Moderation is crucial to promoting healthy online discussions. Although several ‘toxicity’ detection datasets and models have been published, most of them ignore the context of the posts, implicitly assuming that comments may be judged independently. We investigate this assumption by focusing on two questions: (a) does context affect the human judgement, and (b) does conditioning on context improve performance of toxicity detection systems? We experiment with Wikipedia conversations, limiting the notion of context to the previous post in the thread and the discussion title. We find that context can both amplify or mitigate the perceived toxicity of posts. Moreover, a small but significant subset of manually labeled posts (5% in one of our experiments) end up having the opposite toxicity labels if the annotators are not provided with context. Surprisingly, we also find no evidence that context actually improves the performance of toxicity classifiers, having tried a range of classifiers and mechanisms to make them context aware. This points to the need for larger datasets of comments annotated in context. We make our code and data publicly available.
Image captioning applied to biomedical images can assist and accelerate the diagnosis process followed by clinicians. This article is the first survey of biomedical image captioning, discussing datasets, evaluation measures, and state of the art methods. Additionally, we suggest two baselines, a weak and a stronger one; the latter outperforms all current state of the art systems on one of the datasets.
This paper presents the application of two strong baseline systems for toxicity detection and evaluates their performance in identifying and categorizing offensive language in social media. PERSPECTIVE is an API, that serves multiple machine learning models for the improvement of conversations online, as well as a toxicity detection system, trained on a wide variety of comments from platforms across the Internet. BERT is a recently popular language representation model, fine tuned per task and achieving state of the art performance in multiple NLP tasks. PERSPECTIVE performed better than BERT in detecting toxicity, but BERT was much better in categorizing the offensive type. Both baselines were ranked surprisingly high in the SEMEVAL-2019 OFFENSEVAL competition, PERSPECTIVE in detecting an offensive post (12th) and BERT in categorizing it (11th). The main contribution of this paper is the assessment of two strong baselines for the identification (PERSPECTIVE) and the categorization (BERT) of offensive language with little or no additional training data.
Experimenting with a new dataset of 1.6M user comments from a Greek news portal and existing datasets of EnglishWikipedia comments, we show that an RNN outperforms the previous state of the art in moderation. A deep, classification-specific attention mechanism improves further the overall performance of the RNN. We also compare against a CNN and a word-list baseline, considering both fully automatic and semi-automatic moderation.
Experimenting with a dataset of approximately 1.6M user comments from a Greek news sports portal, we explore how a state of the art RNN-based moderation method can be improved by adding user embeddings, user type embeddings, user biases, or user type biases. We observe improvements in all cases, with user embeddings leading to the biggest performance gains.
Experimenting with a new dataset of 1.6M user comments from a news portal and an existing dataset of 115K Wikipedia talk page comments, we show that an RNN operating on word embeddings outpeforms the previous state of the art in moderation, which used logistic regression or an MLP classifier with character or word n-grams. We also compare against a CNN operating on word embeddings, and a word-list baseline. A novel, deep, classificationspecific attention mechanism improves the performance of the RNN further, and can also highlight suspicious words for free, without including highlighted words in the training data. We consider both fully automatic and semi-automatic moderation.