Jingjing Wang


2020

pdf
Aspect Sentiment Classification with Document-level Sentiment Preference Modeling
Xiao Chen | Changlong Sun | Jingjing Wang | Shoushan Li | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In the literature, existing studies always consider Aspect Sentiment Classification (ASC) as an independent sentence-level classification problem aspect by aspect, which largely ignore the document-level sentiment preference information, though obviously such information is crucial for alleviating the information deficiency problem in ASC. In this paper, we explore two kinds of sentiment preference information inside a document, i.e., contextual sentiment consistency w.r.t. the same aspect (namely intra-aspect sentiment consistency) and contextual sentiment tendency w.r.t. all the related aspects (namely inter-aspect sentiment tendency). On the basis, we propose a Cooperative Graph Attention Networks (CoGAN) approach for cooperatively learning the aspect-related sentence representation. Specifically, two graph attention networks are leveraged to model above two kinds of document-level sentiment preference information respectively, followed by an interactive mechanism to integrate the two-fold preference. Detailed evaluation demonstrates the great advantage of the proposed approach to ASC over the state-of-the-art baselines. This justifies the importance of the document-level sentiment preference information to ASC and the effectiveness of our approach capturing such information.

pdf
Multimodal Topic-Enriched Auxiliary Learning for Depression Detection
Minghui An | Jingjing Wang | Shoushan Li | Guodong Zhou
Proceedings of the 28th International Conference on Computational Linguistics

From the perspective of health psychology, human beings with long-term and sustained negativity are highly possible to be diagnosed with depression. Inspired by this, we argue that the global topic information derived from user-generated contents (e.g., texts and images) is crucial to boost the performance of the depression detection task, though this information has been neglected by almost all previous studies on depression detection. To this end, we propose a new Multimodal Topic-enriched Auxiliary Learning (MTAL) approach, aiming at capturing the topic information inside different modalities (i.e., texts and images) for depression detection. Especially, in our approach, a modality-agnostic topic model is proposed to be capable of mining the topical clues from either the discrete textual signals or the continuous visual signals. On this basis, the topic modeling w.r.t. the two modalities are cast as two auxiliary tasks for improving the performance of the primary task (i.e., depression detection). Finally, the detailed evaluation demonstrates the great advantage of our MTAL approach to depression detection over the state-of-the-art baselines. This justifies the importance of the multimodal topic information to depression detection and the effectiveness of our approach in capturing such information.

2019

pdf
Aspect Sentiment Classification Towards Question-Answering with Reinforced Bidirectional Attention Network
Jingjing Wang | Changlong Sun | Shoushan Li | Xiaozhong Liu | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In the literature, existing studies on aspect sentiment classification (ASC) focus on individual non-interactive reviews. This paper extends the research to interactive reviews and proposes a new research task, namely Aspect Sentiment Classification towards Question-Answering (ASC-QA), for real-world applications. This new task aims to predict sentiment polarities for specific aspects from interactive QA style reviews. In particular, a high-quality annotated corpus is constructed for ASC-QA to facilitate corresponding research. On this basis, a Reinforced Bidirectional Attention Network (RBAN) approach is proposed to address two inherent challenges in ASC-QA, i.e., semantic matching between question and answer, and data noise. Experimental results demonstrate the great advantage of the proposed approach to ASC-QA against several state-of-the-art baselines.

pdf
Human-Like Decision Making: Document-level Aspect Sentiment Classification via Hierarchical Reinforcement Learning
Jingjing Wang | Changlong Sun | Shoushan Li | Jiancheng Wang | Luo Si | Min Zhang | Xiaozhong Liu | Guodong Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recently, neural networks have shown promising results on Document-level Aspect Sentiment Classification (DASC). However, these approaches often offer little transparency w.r.t. their inner working mechanisms and lack interpretability. In this paper, to simulating the steps of analyzing aspect sentiment in a document by human beings, we propose a new Hierarchical Reinforcement Learning (HRL) approach to DASC. This approach incorporates clause selection and word selection strategies to tackle the data noise problem in the task of DASC. First, a high-level policy is proposed to select aspect-relevant clauses and discard noisy clauses. Then, a low-level policy is proposed to select sentiment-relevant words and discard noisy words inside the selected clauses. Finally, a sentiment rating predictor is designed to provide reward signals to guide both clause and word selection. Experimental results demonstrate the impressive effectiveness of the proposed approach to DASC over the state-of-the-art baselines.

2018

pdf
Cross-media User Profiling with Joint Textual and Social User Embedding
Jingjing Wang | Shoushan Li | Mingqi Jiang | Hanqian Wu | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

In realistic scenarios, a user profiling model (e.g., gender classification or age regression) learned from one social media might perform rather poorly when tested on another social media due to the different data distributions in the two media. In this paper, we address cross-media user profiling by bridging the knowledge between the source and target media with a uniform user embedding learning approach. In our approach, we first construct a cross-media user-word network to capture the relationship among users through the textual information and a modified cross-media user-user network to capture the relationship among users through the social information. Then, we learn user embedding by jointly learning the heterogeneous network composed of above two networks. Finally, we train a classification (or regression) model with the obtained user embeddings as input to perform user profiling. Empirical studies demonstrate the effectiveness of the proposed approach to two cross-media user profiling tasks, i.e., cross-media gender classification and cross-media age regression.

pdf
Sentiment Classification towards Question-Answering with Hierarchical Matching Network
Chenlin Shen | Changlong Sun | Jingjing Wang | Yangyang Kang | Shoushan Li | Xiaozhong Liu | Luo Si | Min Zhang | Guodong Zhou
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In an e-commerce environment, user-oriented question-answering (QA) text pair could carry rich sentiment information. In this study, we propose a novel task/method to address QA sentiment analysis. In particular, we create a high-quality annotated corpus with specially-designed annotation guidelines for QA-style sentiment classification. On the basis, we propose a three-stage hierarchical matching network to explore deep sentiment information in a QA text pair. First, we segment both the question and answer text into sentences and construct a number of [Q-sentence, A-sentence] units in each QA text pair. Then, by leveraging a QA bidirectional matching layer, the proposed approach can learn the matching vectors of each [Q-sentence, A-sentence] unit. Finally, we characterize the importance of the generated matching vectors via a self-matching attention layer. Experimental results, comparing with a number of state-of-the-art baselines, demonstrate the impressive effectiveness of the proposed approach for QA-style sentiment classification.

2015

pdf
Semi-Stacking for Semi-supervised Sentiment Classification
Shoushan Li | Lei Huang | Jingjing Wang | Guodong Zhou
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)