Jim O’Regan


Speech Data Augmentation for Improving Phoneme Transcriptions of Aphasic Speech Using Wav2Vec 2.0 for the PSST Challenge
Birger Moell | Jim O’Regan | Shivam Mehta | Ambika Kirkland | Harm Lameris | Joakim Gustafson | Jonas Beskow
Proceedings of the RaPID Workshop - Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive/psychiatric/developmental impairments - within the 13th Language Resources and Evaluation Conference

As part of the PSST challenge, we explore how data augmentations, data sources, and model size affect phoneme transcription accuracy on speech produced by individuals with aphasia. We evaluate model performance in terms of feature error rate (FER) and phoneme error rate (PER). We find that data augmentations techniques, such as pitch shift, improve model performance. Additionally, increasing the size of the model decreases FER and PER. Our experiments also show that adding manually-transcribed speech from non-aphasic speakers (TIMIT) improves performance when Room Impulse Response is used to augment the data. The best performing model combines aphasic and non-aphasic data and has a 21.0% PER and a 9.2% FER, a relative improvement of 9.8% compared to the baseline model on the primary outcome measurement. We show that data augmentation, larger model size, and additional non-aphasic data sources can be helpful in improving automatic phoneme recognition models for people with aphasia.


Privacy Issues in Online Machine Translation Services - European Perspective
Pawel Kamocki | Jim O’Regan
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

In order to develop its full potential, global communication needs linguistic support systems such as Machine Translation (MT). In the past decade, free online MT tools have become available to the general public, and the quality of their output is increasing. However, the use of such tools may entail various legal implications, especially as far as processing of personal data is concerned. This is even more evident if we take into account that their business model is largely based on providing translation in exchange for data, which can subsequently be used to improve the translation model, but also for commercial purposes. The purpose of this paper is to examine how free online MT tools fit in the European data protection framework, harmonised by the EU Data Protection Directive. The perspectives of both the user and the MT service provider are taken into account.


Free/Open Source Shallow-Transfer Based Machine Translation for Spanish and Aragonese
Juan Pablo Martínez Cortés | Jim O’Regan | Francis Tyers
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This article describes the development of a bidirectional shallow-transfer based machine translation system for Spanish and Aragonese, based on the Apertium platform, reusing the resources provided by other translators built for the platform. The system, and the morphological analyser built for it, are both the first resources of their kind for Aragonese. The morphological analyser has coverage of over 80\%, and is being reused to create a spelling checker for Aragonese. The translator is bidirectional: the Word Error Rate for Spanish to Aragonese is 16.83%, while Aragonese to Spanish is 11.61%.