Jiaxin Wen


Persona-Guided Planning for Controlling the Protagonist’s Persona in Story Generation
Zhexin Zhang | Jiaxin Wen | Jian Guan | Minlie Huang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Endowing the protagonist with a specific personality is essential for writing an engaging story. In this paper, we aim to control the protagonist’s persona in story generation, i.e., generating a story from a leading context and a persona description, where the protagonist should exhibit the specified personality through a coherent event sequence. Considering that personas are usually embodied implicitly and sparsely in stories, we propose a planning-based generation model named ConPer to explicitly model the relationship between personas and events. ConPer first plans events of the protagonist’s behavior which are motivated by the specified persona through predicting one target sentence, then plans the plot as a sequence of keywords with the guidance of the predicted persona-related events and commonsense knowledge, and finally generates the whole story. Both automatic and manual evaluation results demonstrate that ConPer outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories. Our code is available at https://github.com/thu-coai/ConPer.

AutoCAD: Automatically Generate Counterfactuals for Mitigating Shortcut Learning
Jiaxin Wen | Yeshuang Zhu | Jinchao Zhang | Jie Zhou | Minlie Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent studies have shown the impressive efficacy of counterfactually augmented data (CAD) for reducing NLU models’ reliance on spurious features and improving their generalizability. However, current methods still heavily rely on human efforts or task-specific designs to generate counterfactuals, thereby impeding CAD’s applicability to a broad range of NLU tasks. In this paper, we present AutoCAD, a fully automatic and task-agnostic CAD generation framework. AutoCAD first leverages a classifier to unsupervisedly identify rationales as spans to be intervened, which disentangles spurious and causal features. Then, AutoCAD performs controllable generation enhanced by unlikelihood training to produce diverse counterfactuals. Extensive evaluations on multiple out-of-domain and challenge benchmarks demonstrate that AutoCAD consistently and significantly boosts the out-of-distribution performance of powerful pre-trained models across different NLU tasks, which is comparable or even better than previous state-of-the-art human-in-the-loop or task-specific CAD methods.


Robustness Testing of Language Understanding in Task-Oriented Dialog
Jiexi Liu | Ryuichi Takanobu | Jiaxin Wen | Dazhen Wan | Hongguang Li | Weiran Nie | Cheng Li | Wei Peng | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Most language understanding models in task-oriented dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable output when being exposed to natural language perturbation or variation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural language perturbations for testing the robustness issues in task-oriented dialog. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in task-oriented dialog.