Jiawei Han


2022

pdf
Seed-Guided Topic Discovery with Out-of-Vocabulary Seeds
Yu Zhang | Yu Meng | Xuan Wang | Sheng Wang | Jiawei Han
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Discovering latent topics from text corpora has been studied for decades. Many existing topic models adopt a fully unsupervised setting, and their discovered topics may not cater to users’ particular interests due to their inability of leveraging user guidance. Although there exist seed-guided topic discovery approaches that leverage user-provided seeds to discover topic-representative terms, they are less concerned with two factors: (1) the existence of out-of-vocabulary seeds and (2) the power of pre-trained language models (PLMs). In this paper, we generalize the task of seed-guided topic discovery to allow out-of-vocabulary seeds. We propose a novel framework, named SeeTopic, wherein the general knowledge of PLMs and the local semantics learned from the input corpus can mutually benefit each other. Experiments on three real datasets from different domains demonstrate the effectiveness of SeeTopic in terms of topic coherence, accuracy, and diversity.

pdf
SAIS: Supervising and Augmenting Intermediate Steps for Document-Level Relation Extraction
Yuxin Xiao | Zecheng Zhang | Yuning Mao | Carl Yang | Jiawei Han
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Stepping from sentence-level to document-level, the research on relation extraction (RE) confronts increasing text length and more complicated entity interactions. Consequently, it is more challenging to encode the key information sources—relevant contexts and entity types. However, existing methods only implicitly learn to model these critical information sources while being trained for RE. As a result, they suffer the problems of ineffective supervision and uninterpretable model predictions. In contrast, we propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for RE. Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately so as to enhance interpretability. By assessing model uncertainty, SAIS further boosts the performance via evidence-based data augmentation and ensemble inference while reducing the computational cost. Eventually, SAIS delivers state-of-the-art RE results on three benchmarks (DocRED, CDR, and GDA) and outperforms the runner-up by 5.04% relatively in F1 score in evidence retrieval on DocRED.

pdf
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.

pdf
UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning
Yuning Mao | Lambert Mathias | Rui Hou | Amjad Almahairi | Hao Ma | Jiawei Han | Scott Yih | Madian Khabsa
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent parameter-efficient language model tuning (PELT) methods manage to match the performance of fine-tuning with much fewer trainable parameters and perform especially well when training data is limited. However, different PELT methods may perform rather differently on the same task, making it nontrivial to select the most appropriate method for a specific task, especially considering the fast-growing number of new PELT methods and tasks. In light of model diversity and the difficulty of model selection, we propose a unified framework, UniPELT, which incorporates different PELT methods as submodules and learns to activate the ones that best suit the current data or task setup via gating mechanism. On the GLUE benchmark, UniPELT consistently achieves 1 4% gains compared to the best individual PELT method that it incorporates and even outperforms fine-tuning under different setups. Moreover, UniPELT generally surpasses the upper bound that takes the best performance of all its submodules used individually on each task, indicating that a mixture of multiple PELT methods may be inherently more effective than single methods.

pdf
Phrase-aware Unsupervised Constituency Parsing
Xiaotao Gu | Yikang Shen | Jiaming Shen | Jingbo Shang | Jiawei Han
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent studies have achieved inspiring success in unsupervised grammar induction using masked language modeling (MLM) as the proxy task. Despite their high accuracy in identifying low-level structures, prior arts tend to struggle in capturing high-level structures like clauses, since the MLM task usually only requires information from local context. In this work, we revisit LM-based constituency parsing from a phrase-centered perspective. Inspired by the natural reading process of human, we propose to regularize the parser with phrases extracted by an unsupervised phrase tagger to help the LM model quickly manage low-level structures. For a better understanding of high-level structures, we propose a phrase-guided masking strategy for LM to emphasize more on reconstructing non-phrase words. We show that the initial phrase regularization serves as an effective bootstrap, and phrase-guided masking improves the identification of high-level structures. Experiments on the public benchmark with two different backbone models demonstrate the effectiveness and generality of our method.

pdf
Eider: Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion
Yiqing Xie | Jiaming Shen | Sha Li | Yuning Mao | Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2022

Document-level relation extraction (DocRE) aims to extract semantic relations among entity pairs in a document. Typical DocRE methods blindly take the full document as input, while a subset of the sentences in the document, noted as the evidence, are often sufficient for humans to predict the relation of an entity pair. In this paper, we propose an evidence-enhanced framework, Eider, that empowers DocRE by efficiently extracting evidence and effectively fusing the extracted evidence in inference. We first jointly train an RE model with a lightweight evidence extraction model, which is efficient in both memory and runtime. Empirically, even training the evidence model on silver labels constructed by our heuristic rules can lead to better RE performance. We further design a simple yet effective inference process that makes RE predictions on both extracted evidence and the full document, then fuses the predictions through a blending layer. This allows Eider to focus on important sentences while still having access to the complete information in the document. Extensive experiments show that Eider outperforms state-of-the-art methods on three benchmark datasets (e.g., by 1.37/1.26 Ign F1/F1 on DocRED).

pdf
Topic Taxonomy Expansion via Hierarchy-Aware Topic Phrase Generation
Dongha Lee | Jiaming Shen | Seonghyeon Lee | Susik Yoon | Hwanjo Yu | Jiawei Han
Findings of the Association for Computational Linguistics: EMNLP 2022

Topic taxonomies display hierarchical topic structures of a text corpus and provide topical knowledge to enhance various NLP applications. To dynamically incorporate new topic information, several recent studies have tried to expand (or complete) a topic taxonomy by inserting emerging topics identified in a set of new documents. However, existing methods focus only on frequent terms in documents and the local topic-subtopic relations in a taxonomy, which leads to limited topic term coverage and fails to model the global taxonomy structure. In this work, we propose a novel framework for topic taxonomy expansion, named TopicExpan, which directly generates topic-related terms belonging to new topics. Specifically, TopicExpan leverages the hierarchical relation structure surrounding a new topic and the textual content of an input document for topic term generation. This approach encourages newly-inserted topics to further cover important but less frequent terms as well as to keep their relation consistency within the taxonomy. Experimental results on two real-world text corpora show that TopicExpan significantly outperforms other baseline methods in terms of the quality of output taxonomies.

pdf
PALT: Parameter-Lite Transfer of Language Models for Knowledge Graph Completion
Jianhao Shen | Chenguang Wang | Ye Yuan | Jiawei Han | Heng Ji | Koushik Sen | Ming Zhang | Dawn Song
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper presents a parameter-lite transfer learning approach of pretrained language models (LM) for knowledge graph (KG) completion. Instead of finetuning, which modifies all LM parameters, we only tune a few new parameters while keeping the original LM parameters fixed. We establish this via reformulating KG completion as a “fill-in-the-blank” task, and introducing a parameter-lite encoder on top of the original LMs. We show that, by tuning far fewer parameters than finetuning, LMs transfer non-trivially to most tasks and reach competitiveness with prior state-of-the-art approaches. For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters.

pdf
Unsupervised Multi-Granularity Summarization
Ming Zhong | Yang Liu | Suyu Ge | Yuning Mao | Yizhu Jiao | Xingxing Zhang | Yichong Xu | Chenguang Zhu | Michael Zeng | Jiawei Han
Findings of the Association for Computational Linguistics: EMNLP 2022

Text summarization is a user-preference based task, i.e., for one document, users often have different priorities for the summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between the summary and source document. However, developing systems that can generate summaries with customizable semantic coverage is still an under-explored topic. In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum. We take events as the basic semantic units of the source documents and propose to rank these events by their salience. We also develop a model to summarize input documents with given events as anchors and hints. By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner. Meanwhile, we annotate a new benchmark GranuDUC that contains multiple summaries at different granularities for each document cluster. Experimental results confirm the substantial superiority of GranuSum on multi-granularity summarization over strong baselines. Furthermore, by exploiting the event information, GranuSum also exhibits state-of-the-art performance under the conventional unsupervised abstractive setting.

pdf
Open-Vocabulary Argument Role Prediction For Event Extraction
Yizhu Jiao | Sha Li | Yiqing Xie | Ming Zhong | Heng Ji | Jiawei Han
Findings of the Association for Computational Linguistics: EMNLP 2022

The argument role in event extraction refers to the relation between an event and an argument participating in it. Despite the great progress in event extraction, existing studies still depend on roles pre-defined by domain experts. These studies expose obvious weakness when extending to emerging event types or new domains without available roles. Therefore, more attention and effort needs to be devoted to automatically customizing argument roles. In this paper, we define this essential but under-explored task: open-vocabulary argument role prediction. The goal of this task is to infer a set of argument roles for a given event type. We propose a novel unsupervised framework, RolePred for this task. Specifically, we formulate the role prediction problem as an in-filling task and construct prompts for a pre-trained language model to generate candidate roles. By extracting and analyzing the candidate arguments, the event-specific roles are further merged and selected. To standardize the research of this task, we collect a new human-annotated event extraction dataset including 143 customized argument roles with rich semantics. On this dataset, RolePred outperforms the existing methods by a large margin.

pdf
Towards a Unified Multi-Dimensional Evaluator for Text Generation
Ming Zhong | Yang Liu | Da Yin | Yuning Mao | Yizhu Jiao | Pengfei Liu | Chenguang Zhu | Heng Ji | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-dimensional evaluation is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics, and we lack a reliable framework for a more comprehensive evaluation of advanced models. In this paper, we propose a unified multi-dimensional evaluator UniEval for NLG. We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions. Furthermore, thanks to the unified Boolean QA format, we are able to introduce an intermediate learning phase that enables UniEval to incorporate external knowledge from multiple related tasks and gain further improvement. Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics. Specifically, compared to the top-performing unified evaluators, UniEval achieves a 23% higher correlation on text summarization, and over 43% on dialogue response generation. Also, UniEval demonstrates a strong zero-shot learning ability for unseen evaluation dimensions and tasks. Source code, data, and all pre-trained evaluators are available at https://github.com/maszhongming/UniEval.

pdf
Open Relation and Event Type Discovery with Type Abstraction
Sha Li | Heng Ji | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Conventional “closed-world” information extraction (IE) approaches rely on human ontologies to define the scope for extraction. As a result, such approaches fall short when applied to new domains. This calls for systems that can automatically infer new types from given corpora, a task which we refer to as type discovery.To tackle this problem, we introduce the idea of type abstraction, where the model is prompted to generalize and name the type. Then we use the similarity between inferred names to induce clusters. Observing that this abstraction-based representation is often complementary to the entity/trigger token representation, we set up these two representations as two views and design our model as a co-training framework. Our experiments on multiple relation extraction and event extraction datasets consistently show the advantage of our type abstraction approach.

pdf
CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision
Yuning Mao | Ming Zhong | Jiawei Han
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword.

2021

pdf
Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation
Yuning Mao | Wenchang Ma | Deren Lei | Jiawei Han | Xiang Ren
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Prior studies on text-to-text generation typically assume that the model could figure out what to attend to in the input and what to include in the output via seq2seq learning, with only the parallel training data and no additional guidance. However, it remains unclear whether current models can preserve important concepts in the source input, as seq2seq learning does not have explicit focus on the concepts and commonly used evaluation metrics also treat them equally important as other tokens. In this paper, we present a systematic analysis that studies whether current seq2seq models, especially pre-trained language models, are good enough for preserving important input concepts and to what extent explicitly guiding generation with the concepts as lexical constraints is beneficial. We answer the above questions by conducting extensive analytical experiments on four representative text-to-text generation tasks. Based on the observations, we then propose a simple yet effective framework to automatically extract, denoise, and enforce important input concepts as lexical constraints. This new method performs comparably or better than its unconstrained counterpart on automatic metrics, demonstrates higher coverage for concept preservation, and receives better ratings in the human evaluation. Our code is available at https://github.com/morningmoni/EDE.

pdf
The Future is not One-dimensional: Complex Event Schema Induction by Graph Modeling for Event Prediction
Manling Li | Sha Li | Zhenhailong Wang | Lifu Huang | Kyunghyun Cho | Heng Ji | Jiawei Han | Clare Voss
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Event schemas encode knowledge of stereotypical structures of events and their connections. As events unfold, schemas are crucial to act as a scaffolding. Previous work on event schema induction focuses either on atomic events or linear temporal event sequences, ignoring the interplay between events via arguments and argument relations. We introduce a new concept of Temporal Complex Event Schema: a graph-based schema representation that encompasses events, arguments, temporal connections and argument relations. In addition, we propose a Temporal Event Graph Model that predicts event instances following the temporal complex event schema. To build and evaluate such schemas, we release a new schema learning corpus containing 6,399 documents accompanied with event graphs, and we have manually constructed gold-standard schemas. Intrinsic evaluations by schema matching and instance graph perplexity, prove the superior quality of our probabilistic graph schema library compared to linear representations. Extrinsic evaluation on schema-guided future event prediction further demonstrates the predictive power of our event graph model, significantly outperforming human schemas and baselines by more than 17.8% on HITS@1.

pdf
ChemNER: Fine-Grained Chemistry Named Entity Recognition with Ontology-Guided Distant Supervision
Xuan Wang | Vivian Hu | Xiangchen Song | Shweta Garg | Jinfeng Xiao | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types, making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement).

pdf
Corpus-based Open-Domain Event Type Induction
Jiaming Shen | Yunyi Zhang | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Traditional event extraction methods require predefined event types and their corresponding annotations to learn event extractors. These prerequisites are often hard to be satisfied in real-world applications. This work presents a corpus-based open-domain event type induction method that automatically discovers a set of event types from a given corpus. As events of the same type could be expressed in multiple ways, we propose to represent each event type as a cluster of <predicate sense, object head> pairs. Specifically, our method (1) selects salient predicates and object heads, (2) disambiguates predicate senses using only a verb sense dictionary, and (3) obtains event types by jointly embedding and clustering <predicate sense, object head> pairs in a latent spherical space. Our experiments, on three datasets from different domains, show our method can discover salient and high-quality event types, according to both automatic and human evaluations.

pdf
Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training
Yu Meng | Yunyi Zhang | Jiaxin Huang | Xuan Wang | Yu Zhang | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.

pdf
Few-Shot Named Entity Recognition: An Empirical Baseline Study
Jiaxin Huang | Chunyuan Li | Krishan Subudhi | Damien Jose | Shobana Balakrishnan | Weizhu Chen | Baolin Peng | Jianfeng Gao | Jiawei Han
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper presents an empirical study to efficiently build named entity recognition (NER) systems when a small amount of in-domain labeled data is available. Based upon recent Transformer-based self-supervised pre-trained language models (PLMs), we investigate three orthogonal schemes to improve model generalization ability in few-shot settings: (1) meta-learning to construct prototypes for different entity types, (2) task-specific supervised pre-training on noisy web data to extract entity-related representations and (3) self-training to leverage unlabeled in-domain data. On 10 public NER datasets, we perform extensive empirical comparisons over the proposed schemes and their combinations with various proportions of labeled data, our experiments show that (i)in the few-shot learning setting, the proposed NER schemes significantly improve or outperform the commonly used baseline, a PLM-based linear classifier fine-tuned using domain labels. (ii) We create new state-of-the-art results on both few-shot and training-free settings compared with existing methods.

pdf
Reader-Guided Passage Reranking for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Training ELECTRA Augmented with Multi-word Selection
Jiaming Shen | Jialu Liu | Tianqi Liu | Cong Yu | Jiawei Han
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Generation-Augmented Retrieval for Open-Domain Question Answering
Yuning Mao | Pengcheng He | Xiaodong Liu | Yelong Shen | Jianfeng Gao | Jiawei Han | Weizhu Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.

pdf
Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
Luyu Gao | Yunyi Zhang | Jiawei Han | Jamie Callan
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Contrastive learning has been applied successfully to learn vector representations of text. Previous research demonstrated that learning high-quality representations benefits from batch-wise contrastive loss with a large number of negatives. In practice, the technique of in-batch negative is used, where for each example in a batch, other batch examples’ positives will be taken as its negatives, avoiding encoding extra negatives. This, however, still conditions each example’s loss on all batch examples and requires fitting the entire large batch into GPU memory. This paper introduces a gradient caching technique that decouples backpropagation between contrastive loss and the encoder, removing encoder backward pass data dependency along the batch dimension. As a result, gradients can be computed for one subset of the batch at a time, leading to almost constant memory usage.

pdf
Event Time Extraction and Propagation via Graph Attention Networks
Haoyang Wen | Yanru Qu | Heng Ji | Qiang Ning | Jiawei Han | Avi Sil | Hanghang Tong | Dan Roth
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Grounding events into a precise timeline is important for natural language understanding but has received limited attention in recent work. This problem is challenging due to the inherent ambiguity of language and the requirement for information propagation over inter-related events. This paper first formulates this problem based on a 4-tuple temporal representation used in entity slot filling, which allows us to represent fuzzy time spans more conveniently. We then propose a graph attention network-based approach to propagate temporal information over document-level event graphs constructed by shared entity arguments and temporal relations. To better evaluate our approach, we present a challenging new benchmark on the ACE2005 corpus, where more than 78% of events do not have time spans mentioned explicitly in their local contexts. The proposed approach yields an absolute gain of 7.0% in match rate over contextualized embedding approaches, and 16.3% higher match rate compared to sentence-level manual event time argument annotation.

pdf
Document-Level Event Argument Extraction by Conditional Generation
Sha Li | Heng Ji | Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Event extraction has long been treated as a sentence-level task in the IE community. We argue that this setting does not match human informative seeking behavior and leads to incomplete and uninformative extraction results. We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates. We also compile a new document-level event extraction benchmark dataset WikiEvents which includes complete event and coreference annotation. On the task of argument extraction, we achieve an absolute gain of 7.6% F1 and 5.7% F1 over the next best model on the RAMS and WikiEvents dataset respectively. On the more challenging task of informative argument extraction, which requires implicit coreference reasoning, we achieve a 9.3% F1 gain over the best baseline. To demonstrate the portability of our model, we also create the first end-to-end zero-shot event extraction framework and achieve 97% of fully supervised model’s trigger extraction performance and 82% of the argument extraction performance given only access to 10 out of the 33 types on ACE.

pdf
TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names
Jiaming Shen | Wenda Qiu | Yu Meng | Jingbo Shang | Xiang Ren | Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Hierarchical multi-label text classification (HMTC) aims to tag each document with a set of classes from a taxonomic class hierarchy. Most existing HMTC methods train classifiers using massive human-labeled documents, which are often too costly to obtain in real-world applications. In this paper, we explore to conduct HMTC based on only class surface names as supervision signals. We observe that to perform HMTC, human experts typically first pinpoint a few most essential classes for the document as its “core classes”, and then check core classes’ ancestor classes to ensure the coverage. To mimic human experts, we propose a novel HMTC framework, named TaxoClass. Specifically, TaxoClass (1) calculates document-class similarities using a textual entailment model, (2) identifies a document’s core classes and utilizes confident core classes to train a taxonomy-enhanced classifier, and (3) generalizes the classifier via multi-label self-training. Our experiments on two challenging datasets show TaxoClass can achieve around 0.71 Example-F1 using only class names, outperforming the best previous method by 25%.

pdf
On the Transformer Growth for Progressive BERT Training
Xiaotao Gu | Liyuan Liu | Hongkun Yu | Jing Li | Chen Chen | Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

As the excessive pre-training cost arouses the need to improve efficiency, considerable efforts have been made to train BERT progressively–start from an inferior but low-cost model and gradually increase the computational complexity. Our objective is to help advance the understanding of such Transformer growth and discover principles that guide progressive training. First, we find that similar to network architecture selection, Transformer growth also favors compound scaling. Specifically, while existing methods only conduct network growth in a single dimension, we observe that it is beneficial to use compound growth operators and balance multiple dimensions (e.g., depth, width, and input length of the model). Moreover, we explore alternative growth operators in each dimension via controlled comparison to give practical guidance for operator selection. In light of our analyses, the proposed method CompoundGrow speeds up BERT pre-training by 73.6% and 82.2% for the base and large models respectively while achieving comparable performances.

pdf
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
Qingyun Wang | Manling Li | Xuan Wang | Nikolaus Parulian | Guangxing Han | Jiawei Ma | Jingxuan Tu | Ying Lin | Ranran Haoran Zhang | Weili Liu | Aabhas Chauhan | Yingjun Guan | Bangzheng Li | Ruisong Li | Xiangchen Song | Yi Fung | Heng Ji | Jiawei Han | Shih-Fu Chang | James Pustejovsky | Jasmine Rah | David Liem | Ahmed ELsayed | Martha Palmer | Clare Voss | Cynthia Schneider | Boyan Onyshkevych
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.

pdf
RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
Haoyang Wen | Ying Lin | Tuan Lai | Xiaoman Pan | Sha Li | Xudong Lin | Ben Zhou | Manling Li | Haoyu Wang | Hongming Zhang | Xiaodong Yu | Alexander Dong | Zhenhailong Wang | Yi Fung | Piyush Mishra | Qing Lyu | Dídac Surís | Brian Chen | Susan Windisch Brown | Martha Palmer | Chris Callison-Burch | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.

pdf
Open-Domain Question Answering with Pre-Constructed Question Spaces
Jinfeng Xiao | Lidan Wang | Franck Dernoncourt | Trung Bui | Tong Sun | Jiawei Han
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

Open-domain question answering aims at locating the answers to user-generated questions in massive collections of documents. Retriever-readers and knowledge graph approaches are two big families of solutions to this task. A retriever-reader first applies information retrieval techniques to locate a few passages that are likely to be relevant, and then feeds the retrieved text to a neural network reader to extract the answer. Alternatively, knowledge graphs can be constructed and queried to answer users’ questions. We propose an algorithm with a novel reader-retriever design that differs from both families. Our reader-retriever first uses an offline reader to read the corpus and generate collections of all answerable questions associated with their answers, and then uses an online retriever to respond to user queries by searching the pre-constructed question spaces for answers that are most likely to be asked in the given way. We further combine one retriever-reader and two reader-retrievers into a hybrid model called R6 for the best performance. Experiments with two large-scale public datasets show that R6 achieves state-of-the-art accuracy.

2020

pdf
Facet-Aware Evaluation for Extractive Summarization
Yuning Mao | Liyuan Liu | Qi Zhu | Xiang Ren | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Commonly adopted metrics for extractive summarization focus on lexical overlap at the token level. In this paper, we present a facet-aware evaluation setup for better assessment of the information coverage in extracted summaries. Specifically, we treat each sentence in the reference summary as a facet, identify the sentences in the document that express the semantics of each facet as support sentences of the facet, and automatically evaluate extractive summarization methods by comparing the indices of extracted sentences and support sentences of all the facets in the reference summary. To facilitate this new evaluation setup, we construct an extractive version of the CNN/Daily Mail dataset and perform a thorough quantitative investigation, through which we demonstrate that facet-aware evaluation manifests better correlation with human judgment than ROUGE, enables fine-grained evaluation as well as comparative analysis, and reveals valuable insights of state-of-the-art summarization methods. Data can be found at https://github.com/morningmoni/FAR.

pdf
Empower Entity Set Expansion via Language Model Probing
Yunyi Zhang | Jiaming Shen | Jingbo Shang | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Entity set expansion, aiming at expanding a small seed entity set with new entities belonging to the same semantic class, is a critical task that benefits many downstream NLP and IR applications, such as question answering, query understanding, and taxonomy construction. Existing set expansion methods bootstrap the seed entity set by adaptively selecting context features and extracting new entities. A key challenge for entity set expansion is to avoid selecting ambiguous context features which will shift the class semantics and lead to accumulative errors in later iterations. In this study, we propose a novel iterative set expansion framework that leverages automatically generated class names to address the semantic drift issue. In each iteration, we select one positive and several negative class names by probing a pre-trained language model, and further score each candidate entity based on selected class names. Experiments on two datasets show that our framework generates high-quality class names and outperforms previous state-of-the-art methods significantly.

pdf
EVIDENCEMINER: Textual Evidence Discovery for Life Sciences
Xuan Wang | Yingjun Guan | Weili Liu | Aabhas Chauhan | Enyi Jiang | Qi Li | David Liem | Dibakar Sigdel | John Caufield | Peipei Ping | Jiawei Han
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEMINER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover important research issues, leading to more effective research and more in-depth quantitative analysis. The system of EVIDENCEMINER is available at https://evidenceminer.firebaseapp.com/.

pdf
Near-imperceptible Neural Linguistic Steganography via Self-Adjusting Arithmetic Coding
Jiaming Shen | Heng Ji | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Linguistic steganography studies how to hide secret messages in natural language cover texts. Traditional methods aim to transform a secret message into an innocent text via lexical substitution or syntactical modification. Recently, advances in neural language models (LMs) enable us to directly generate cover text conditioned on the secret message. In this study, we present a new linguistic steganography method which encodes secret messages using self-adjusting arithmetic coding based on a neural language model. We formally analyze the statistical imperceptibility of this method and empirically show it outperforms the previous state-of-the-art methods on four datasets by 15.3% and 38.9% in terms of bits/word and KL metrics, respectively. Finally, human evaluations show that 51% of generated cover texts can indeed fool eavesdroppers.

pdf
Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning
Yuning Mao | Yanru Qu | Yiqing Xie | Xiang Ren | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.

pdf
Understanding the Difficulty of Training Transformers
Liyuan Liu | Xiaodong Liu | Jianfeng Gao | Weizhu Chen | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding carefully designing cutting-edge optimizers and learning rate schedulers (e.g., conventional SGD fails to train Transformers effectively). Our objective here is to understand __what complicates Transformer training__ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially—for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin (Adaptive model initialization) to stabilize the early stage’s training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance

pdf
Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding
Jiaxin Huang | Yu Meng | Fang Guo | Heng Ji | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets.

pdf
SynSetExpan: An Iterative Framework for Joint Entity Set Expansion and Synonym Discovery
Jiaming Shen | Wenda Qiu | Jingbo Shang | Michelle Vanni | Xiang Ren | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have a similar likelihood of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities’ infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks.

pdf
Text Classification Using Label Names Only: A Language Model Self-Training Approach
Yu Meng | Yunyi Zhang | Jiaxin Huang | Chenyan Xiong | Heng Ji | Chao Zhang | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.

2019

pdf
Biomedical Event Extraction based on Knowledge-driven Tree-LSTM
Diya Li | Lifu Huang | Heng Ji | Jiawei Han
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Event extraction for the biomedical domain is more challenging than that in the general news domain since it requires broader acquisition of domain-specific knowledge and deeper understanding of complex contexts. To better encode contextual information and external background knowledge, we propose a novel knowledge base (KB)-driven tree-structured long short-term memory networks (Tree-LSTM) framework, incorporating two new types of features: (1) dependency structures to capture wide contexts; (2) entity properties (types and category descriptions) from external ontologies via entity linking. We evaluate our approach on the BioNLP shared task with Genia dataset and achieve a new state-of-the-art result. In addition, both quantitative and qualitative studies demonstrate the advancement of the Tree-LSTM and the external knowledge representation for biomedical event extraction.

pdf
Arabic Named Entity Recognition: What Works and What’s Next
Liyuan Liu | Jingbo Shang | Jiawei Han
Proceedings of the Fourth Arabic Natural Language Processing Workshop

This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.

pdf
Constrained Sequence-to-sequence Semitic Root Extraction for Enriching Word Embeddings
Ahmed El-Kishky | Xingyu Fu | Aseel Addawood | Nahil Sobh | Clare Voss | Jiawei Han
Proceedings of the Fourth Arabic Natural Language Processing Workshop

In this paper, we tackle the problem of “root extraction” from words in the Semitic language family. A challenge in applying natural language processing techniques to these languages is the data sparsity problem that arises from their rich internal morphology, where the substructure is inherently non-concatenative and morphemes are interdigitated in word formation. While previous automated methods have relied on human-curated rules or multiclass classification, they have not fully leveraged the various combinations of regular, sequential concatenative morphology within the words and the internal interleaving within templatic stems of roots and patterns. To address this, we propose a constrained sequence-to-sequence root extraction method. Experimental results show our constrained model outperforms a variety of methods at root extraction. Furthermore, by enriching word embeddings with resulting decompositions, we show improved results on word analogy, word similarity, and language modeling tasks.

pdf
Reliability-aware Dynamic Feature Composition for Name Tagging
Ying Lin | Liyuan Liu | Heng Ji | Dong Yu | Jiawei Han
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Word embeddings are widely used on a variety of tasks and can substantially improve the performance. However, their quality is not consistent throughout the vocabulary due to the long-tail distribution of word frequency. Without sufficient contexts, rare word embeddings are usually less reliable than those of common words. However, current models typically trust all word embeddings equally regardless of their reliability and thus may introduce noise and hurt the performance. Since names often contain rare and uncommon words, this problem is particularly critical for name tagging. In this paper, we propose a novel reliability-aware name tagging model to tackle this issue. We design a set of word frequency-based reliability signals to indicate the quality of each word embedding. Guided by the reliability signals, the model is able to dynamically select and compose features such as word embedding and character-level representation using gating mechanisms. For example, if an input word is rare, the model relies less on its word embedding and assigns higher weights to its character and contextual features. Experiments on OntoNotes 5.0 show that our model outperforms the baseline model by 2.7% absolute gain in F-score. In cross-genre experiments on five genres in OntoNotes, our model improves the performance for most genre pairs and obtains up to 5% absolute F-score gain.

pdf
Hierarchical Text Classification with Reinforced Label Assignment
Yuning Mao | Jingjing Tian | Jiawei Han | Xiang Ren
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at https://github.com/morningmoni/HiLAP.

pdf
CrossWeigh: Training Named Entity Tagger from Imperfect Annotations
Zihan Wang | Jingbo Shang | Liyuan Liu | Lihao Lu | Jiacheng Liu | Jiawei Han
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Everyone makes mistakes. So do human annotators when curating labels for named entity recognition (NER). Such label mistakes might hurt model training and interfere model comparison. In this study, we dive deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER. We are able to identify label mistakes in about 5.38% test sentences, which is a significant ratio considering that the state-of-the-art test F1 score is already around 93%. Therefore, we manually correct these label mistakes and form a cleaner test set. Our re-evaluation of popular models on this corrected test set leads to more accurate assessments, compared to those on the original test set. More importantly, we propose a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training. Specifically, it partitions the training data into several folds and train independent NER models to identify potential mistakes in each fold. Then it adjusts the weights of training data accordingly to train the final NER model. Extensive experiments demonstrate significant improvements of plugging various NER models into our proposed framework on three datasets. All implementations and corrected test set are available at our Github repo https://github.com/ZihanWangKi/CrossWeigh.

2018

pdf
Efficient Contextualized Representation: Language Model Pruning for Sequence Labeling
Liyuan Liu | Xiang Ren | Jingbo Shang | Xiaotao Gu | Jian Peng | Jiawei Han
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Many efforts have been made to facilitate natural language processing tasks with pre-trained language models (LMs), and brought significant improvements to various applications. To fully leverage the nearly unlimited corpora and capture linguistic information of multifarious levels, large-size LMs are required; but for a specific task, only parts of these information are useful. Such large-sized LMs, even in the inference stage, may cause heavy computation workloads, making them too time-consuming for large-scale applications. Here we propose to compress bulky LMs while preserving useful information with regard to a specific task. As different layers of the model keep different information, we develop a layer selection method for model pruning using sparsity-inducing regularization. By introducing the dense connectivity, we can detach any layer without affecting others, and stretch shallow and wide LMs to be deep and narrow. In model training, LMs are learned with layer-wise dropouts for better robustness. Experiments on two benchmark datasets demonstrate the effectiveness of our method.

pdf
Learning Named Entity Tagger using Domain-Specific Dictionary
Jingbo Shang | Liyuan Liu | Xiaotao Gu | Xiang Ren | Teng Ren | Jiawei Han
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent advances in deep neural models allow us to build reliable named entity recognition (NER) systems without handcrafting features. However, such methods require large amounts of manually-labeled training data. There have been efforts on replacing human annotations with distant supervision (in conjunction with external dictionaries), but the generated noisy labels pose significant challenges on learning effective neural models. Here we propose two neural models to suit noisy distant supervision from the dictionary. First, under the traditional sequence labeling framework, we propose a revised fuzzy CRF layer to handle tokens with multiple possible labels. After identifying the nature of noisy labels in distant supervision, we go beyond the traditional framework and propose a novel, more effective neural model AutoNER with a new Tie or Break scheme. In addition, we discuss how to refine distant supervision for better NER performance. Extensive experiments on three benchmark datasets demonstrate that AutoNER achieves the best performance when only using dictionaries with no additional human effort, and delivers competitive results with state-of-the-art supervised benchmarks.

pdf bib
Entropy-Based Subword Mining with an Application to Word Embeddings
Ahmed El-Kishky | Frank Xu | Aston Zhang | Stephen Macke | Jiawei Han
Proceedings of the Second Workshop on Subword/Character LEvel Models

Recent literature has shown a wide variety of benefits to mapping traditional one-hot representations of words and phrases to lower-dimensional real-valued vectors known as word embeddings. Traditionally, most word embedding algorithms treat each word as the finest meaningful semantic granularity and perform embedding by learning distinct embedding vectors for each word. Contrary to this line of thought, technical domains such as scientific and medical literature compose words from subword structures such as prefixes, suffixes, and root-words as well as compound words. Treating individual words as the finest-granularity unit discards meaningful shared semantic structure between words sharing substructures. This not only leads to poor embeddings for text corpora that have long-tail distributions, but also heuristic methods for handling out-of-vocabulary words. In this paper we propose SubwordMine, an entropy-based subword mining algorithm that is fast, unsupervised, and fully data-driven. We show that this allows for great cross-domain performance in identifying semantically meaningful subwords. We then investigate utilizing the mined subwords within the FastText embedding model and compare performance of the learned representations in a downstream language modeling task.

pdf
End-to-End Reinforcement Learning for Automatic Taxonomy Induction
Yuning Mao | Xiang Ren | Jiaming Shen | Xiaotao Gu | Jiawei Han
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a novel end-to-end reinforcement learning approach to automatic taxonomy induction from a set of terms. While prior methods treat the problem as a two-phase task (i.e.,, detecting hypernymy pairs followed by organizing these pairs into a tree-structured hierarchy), we argue that such two-phase methods may suffer from error propagation, and cannot effectively optimize metrics that capture the holistic structure of a taxonomy. In our approach, the representations of term pairs are learned using multiple sources of information and used to determine which term to select and where to place it on the taxonomy via a policy network. All components are trained in an end-to-end manner with cumulative rewards, measured by a holistic tree metric over the training taxonomies. Experiments on two public datasets of different domains show that our approach outperforms prior state-of-the-art taxonomy induction methods up to 19.6% on ancestor F1.

2017

pdf
Life-iNet: A Structured Network-Based Knowledge Exploration and Analytics System for Life Sciences
Xiang Ren | Jiaming Shen | Meng Qu | Xuan Wang | Zeqiu Wu | Qi Zhu | Meng Jiang | Fangbo Tao | Saurabh Sinha | David Liem | Peipei Ping | Richard Weinshilboum | Jiawei Han
Proceedings of ACL 2017, System Demonstrations

pdf
Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach
Liyuan Liu | Xiang Ren | Qi Zhu | Shi Zhi | Huan Gui | Heng Ji | Jiawei Han
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Relation extraction is a fundamental task in information extraction. Most existing methods have heavy reliance on annotations labeled by human experts, which are costly and time-consuming. To overcome this drawback, we propose a novel framework, REHession, to conduct relation extractor learning using annotations from heterogeneous information source, e.g., knowledge base and domain heuristics. These annotations, referred as heterogeneous supervision, often conflict with each other, which brings a new challenge to the original relation extraction task: how to infer the true label from noisy labels for a given instance. Identifying context information as the backbone of both relation extraction and true label discovery, we adopt embedding techniques to learn the distributed representations of context, which bridges all components with mutual enhancement in an iterative fashion. Extensive experimental results demonstrate the superiority of REHession over the state-of-the-art.

pdf
Identifying Semantically Deviating Outlier Documents
Honglei Zhuang | Chi Wang | Fangbo Tao | Lance Kaplan | Jiawei Han
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

A document outlier is a document that substantially deviates in semantics from the majority ones in a corpus. Automatic identification of document outliers can be valuable in many applications, such as screening health records for medical mistakes. In this paper, we study the problem of mining semantically deviating document outliers in a given corpus. We develop a generative model to identify frequent and characteristic semantic regions in the word embedding space to represent the given corpus, and a robust outlierness measure which is resistant to noisy content in documents. Experiments conducted on two real-world textual data sets show that our method can achieve an up to 135% improvement over baselines in terms of recall at top-1% of the outlier ranking.

2016

pdf
AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding
Xiang Ren | Wenqi He | Meng Qu | Lifu Huang | Heng Ji | Jiawei Han
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf
Liberal Event Extraction and Event Schema Induction
Lifu Huang | Taylor Cassidy | Xiaocheng Feng | Heng Ji | Clare R. Voss | Jiawei Han | Avirup Sil
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
Cross-media Event Extraction and Recommendation
Di Lu | Clare Voss | Fangbo Tao | Xiang Ren | Rachel Guan | Rostyslav Korolov | Tongtao Zhang | Dongang Wang | Hongzhi Li | Taylor Cassidy | Heng Ji | Shih-fu Chang | Jiawei Han | William Wallace | James Hendler | Mei Si | Lance Kaplan
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations

pdf
FastHybrid: A Hybrid Model for Efficient Answer Selection
Lidan Wang | Ming Tan | Jiawei Han
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Answer selection is a core component in any question-answering systems. It aims to select correct answer sentences for a given question from a pool of candidate sentences. In recent years, many deep learning methods have been proposed and shown excellent results for this task. However, these methods typically require extensive parameter (and hyper-parameter) tuning, which give rise to efficiency issues for large-scale datasets, and potentially make them less portable across new datasets and domains (as re-tuning is usually required). In this paper, we propose an extremely efficient hybrid model (FastHybrid) that tackles the problem from both an accuracy and scalability point of view. FastHybrid is a light-weight model that requires little tuning and adaptation across different domains. It combines a fast deep model (which will be introduced in the method section) with an initial information retrieval model to effectively and efficiently handle answer selection. We introduce a new efficient attention mechanism in the hybrid model and demonstrate its effectiveness on several QA datasets. Experimental results show that although the hybrid uses no training data, its accuracy is often on-par with supervised deep learning techniques, while significantly reducing training and tuning costs across different domains.

2015

pdf
Context-aware Entity Morph Decoding
Boliang Zhang | Hongzhao Huang | Xiaoman Pan | Sujian Li | Chin-Yew Lin | Heng Ji | Kevin Knight | Zhen Wen | Yizhou Sun | Jiawei Han | Bulent Yener
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf bib
Successful Data Mining Methods for NLP
Jiawei Han | Heng Ji | Yizhou Sun
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing: Tutorial Abstracts

2014

pdf
The Wisdom of Minority: Unsupervised Slot Filling Validation based on Multi-dimensional Truth-Finding
Dian Yu | Hongzhao Huang | Taylor Cassidy | Heng Ji | Chi Wang | Shi Zhi | Jiawei Han | Clare Voss | Malik Magdon-Ismail
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf
Be Appropriate and Funny: Automatic Entity Morph Encoding
Boliang Zhang | Hongzhao Huang | Xiaoman Pan | Heng Ji | Kevin Knight | Zhen Wen | Yizhou Sun | Jiawei Han | Bulent Yener
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2013

pdf
Resolving Entity Morphs in Censored Data
Hongzhao Huang | Zhen Wen | Dian Yu | Heng Ji | Yizhou Sun | Jiawei Han | He Li
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2012

pdf
Tweet Ranking Based on Heterogeneous Networks
Hongzhao Huang | Arkaitz Zubiaga | Heng Ji | Hongbo Deng | Dong Wang | Hieu Le | Tarek Abdelzaher | Jiawei Han | Alice Leung | John Hancock | Clare Voss
Proceedings of COLING 2012

2010

pdf
Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions
Kavita Ganesan | ChengXiang Zhai | Jiawei Han
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)

Search
Co-authors