Jiarui Zhang


2021

pdf
基于BPE分词的中国古诗主题模型及主题可控的诗歌生成(Topic model and topic-controlled poetry generation of Chinese ancient poem based on BPE)
Jiarui Zhang (张家瑞) | Wenhao Li (李文浩) | Maosong Sun (孙茂松)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

中国古代诗歌是人类文化的瑰宝,其短小精悍的语言却能表达出极其丰富的含义和主题,从古至今吸引了无数的爱好者的欣赏。本文以超过锸锰万首古诗为研究对象,基于BPE算法,按照共现频率对古诗集进行分词,以便于下游任务对古诗的语义进行更准确的理解,我们还将分词后的古诗语料利用隐狄利克雷分配(LDA)模型进行了主题分析。通过比较、调整主题的数量得到了准确度较高的主题模型。更进一步,我们还对语料中的绝句和律诗逐句套用了主题模型,得到了一首诗内部的主题转移矩阵,并进行了一些相关的分析。最后,我们利用了简单的控制码方法将主题模型嵌入到诗歌生成模型中,实现了主题可控的诗歌生成,同时检验了我们训练的主题模型的有效性。

2020

pdf
Modeling Discourse Structure for Document-level Neural Machine Translation
Junxuan Chen | Xiang Li | Jiarui Zhang | Chulun Zhou | Jianwei Cui | Bin Wang | Jinsong Su
Proceedings of the First Workshop on Automatic Simultaneous Translation

Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.