Jiaqing Liang


2022

pdf
Generative Entity Typing with Curriculum Learning
Siyu Yuan | Deqing Yang | Jiaqing Liang | Zhixu Li | Jinxi Liu | Jingyue Huang | Yanghua Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Entity typing aims to assign types to the entity mentions in given texts. The traditional classification-based entity typing paradigm has two unignorable drawbacks: 1) it fails to assign an entity to the types beyond the predefined type set, and 2) it can hardly handle few-shot and zero-shot situations where many long-tail types only have few or even no training instances. To overcome these drawbacks, we propose a novel generative entity typing (GET) paradigm: given a text with an entity mention, the multiple types for the role that the entity plays in the text are generated with a pre-trained language model (PLM). However, PLMs tend to generate coarse-grained types after fine-tuning upon the entity typing dataset. In addition, only the heterogeneous training data consisting of a small portion of human-annotated data and a large portion of auto-generated but low-quality data are provided for model training. To tackle these problems, we employ curriculum learning (CL) to train our GET model on heterogeneous data, where the curriculum could be self-adjusted with the self-paced learning according to its comprehension of the type granularity and data heterogeneity. Our extensive experiments upon the datasets of different languages and downstream tasks justify the superiority of our GET model over the state-of-the-art entity typing models. The code has been released on https://github.com/siyuyuan/GET.

2021

pdf
HacRED: A Large-Scale Relation Extraction Dataset Toward Hard Cases in Practical Applications
Qiao Cheng | Juntao Liu | Xiaoye Qu | Jin Zhao | Jiaqing Liang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan | Yanghua Xiao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Revisiting the Negative Data of Distantly Supervised Relation Extraction
Chenhao Xie | Jiaqing Liang | Jingping Liu | Chengsong Huang | Wenhao Huang | Yanghua Xiao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Distantly supervision automatically generates plenty of training samples for relation extraction. However, it also incurs two major problems: noisy labels and imbalanced training data. Previous works focus more on reducing wrongly labeled relations (false positives) while few explore the missing relations that are caused by incompleteness of knowledge base (false negatives). Furthermore, the quantity of negative labels overwhelmingly surpasses the positive ones in previous problem formulations. In this paper, we first provide a thorough analysis of the above challenges caused by negative data. Next, we formulate the problem of relation extraction into as a positive unlabeled learning task to alleviate false negative problem. Thirdly, we propose a pipeline approach, dubbed ReRe, that first performs sentence classification with relational labels and then extracts the subjects/objects. Experimental results show that the proposed method consistently outperforms existing approaches and remains excellent performance even learned with a large quantity of false positive samples. Source code is available online at https://github.com/redreamality/RERE-relation-extraction.