Jian Ye


2022

pdf
HCLD: A Hierarchical Framework for Zero-shot Cross-lingual Dialogue System
Zhanyu Ma | Jian Ye | Xurui Yang | Jianfeng Liu
Proceedings of the 29th International Conference on Computational Linguistics

Recently, many task-oriented dialogue systems need to serve users in different languages. However, it is time-consuming to collect enough data of each language for training. Thus, zero-shot adaptation of cross-lingual task-oriented dialog systems has been studied. Most of existing methods consider the word-level alignments to conduct two main tasks for task-oriented dialogue system, i.e., intent detection and slot filling, and they rarely explore the dependency relations among these two tasks. In this paper, we propose a hierarchical framework to classify the pre-defined intents in the high-level and fulfill slot filling under the guidance of intent in the low-level. Particularly, we incorporate sentence-level alignment among different languages to enhance the performance of intent detection. The extensive experiments report that our proposed method achieves the SOTA performance on a public task-oriented dialog dataset.

2020

pdf
Meet Changes with Constancy: Learning Invariance in Multi-Source Translation
Jianfeng Liu | Ling Luo | Xiang Ao | Yan Song | Haoran Xu | Jian Ye
Proceedings of the 28th International Conference on Computational Linguistics

Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one systems. Despite the remarkable success of existing models, they usually neglect the fact that multiple source inputs may have inconsistencies. Such differences might bring noise to the task and limit the performance of existing multi-source NMT approaches due to their indiscriminate usage of input sources for target word predictions. In this paper, we attempt to leverage the potential complementary information among distinct sources and alleviate the occasional conflicts of them. To accomplish that, we propose a source invariance network to learn the invariant information of parallel sources. Such network can be easily integrated with multi-encoder based multi-source NMT methods (e.g. multi-encoder RNN and transformer) to enhance the translation results. Extensive experiments on two multi-source translation tasks demonstrate that the proposed approach not only achieves clear gains in translation quality but also captures implicit invariance between different sources.