Jian Song


Improving Semantic Matching through Dependency-Enhanced Pre-trained Model with Adaptive Fusion
Jian Song | Di Liang | Rumei Li | Yuntao Li | Sirui Wang | Minlong Peng | Wei Wu | Yongxin Yu
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the Dependency-Enhanced Adaptive Fusion Attention (DAFA), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, (i) DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. (ii) It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.

DABERT: Dual Attention Enhanced BERT for Semantic Matching
Sirui Wang | Di Liang | Jian Song | Yuntao Li | Wei Wu
Proceedings of the 29th International Conference on Computational Linguistics

Transformer-based pre-trained language models such as BERT have achieved remarkable results in Semantic Sentence Matching. However, existing models still suffer from insufficient ability to capture subtle differences. Minor noise like word addition, deletion, and modification of sentences may cause flipped predictions. To alleviate this problem, we propose a novel Dual Attention Enhanced BERT (DABERT) to enhance the ability of BERT to capture fine-grained differences in sentence pairs. DABERT comprises (1) Dual Attention module, which measures soft word matches by introducing a new dual channel alignment mechanism to model affinity and difference attention. (2) Adaptive Fusion module, this module uses attention to learn the aggregation of difference and affinity features, and generates a vector describing the matching details of sentence pairs. We conduct extensive experiments on well-studied semantic matching and robustness test datasets, and the experimental results show the effectiveness of our proposed method.