Token-level adaptive training approaches can alleviate the token imbalance problem and thus improve neural machine translation, through re-weighting the losses of different target tokens based on specific statistical metrics (e.g., token frequency or mutual information). Given that standard translation models make predictions on the condition of previous target contexts, we argue that the above statistical metrics ignore target context information and may assign inappropriate weights to target tokens. While one possible solution is to directly take target contexts into these statistical metrics, the target-context-aware statistical computing is extremely expensive, and the corresponding storage overhead is unrealistic. To solve the above issues, we propose a target-context-aware metric, named conditional bilingual mutual information (CBMI), which makes it feasible to supplement target context information for statistical metrics. Particularly, our CBMI can be formalized as the log quotient of the translation model probability and language model probability by decomposing the conditional joint distribution. Thus CBMI can be efficiently calculated during model training without any pre-specific statistical calculations and large storage overhead. Furthermore, we propose an effective adaptive training approach based on both the token- and sentence-level CBMI. Experimental results on WMT14 English-German and WMT19 Chinese-English tasks show our approach can significantly outperform the Transformer baseline and other related methods.
Event detection (ED) is a critical subtask of event extraction that seeks to identify event triggers of certain types in texts.Despite significant advances in ED, existing methods typically follow a “one model fits all types” approach, which sees no differences between event types and often results in a quite skewed performance.Finding the causes of skewed performance is crucial for the robustness of an ED model, but to date there has been little exploration of this problem.This research examines the issue in depth and presents a new concept termed trigger salience attribution, which can explicitly quantify the underlying patterns of events. On this foundation, we develop a new training mechanism for ED, which can distinguish between trigger-dependent and context-dependent types and achieve promising performance on two benchmarks.Finally, by highlighting many distinct characteristics of trigger-dependent and context-dependent types, our work may promote more research into this problem.
Back-translation has been proven to be effective in unsupervised domain adaptation of neural machine translation (NMT). However, the existing back-translation methods mainly improve domain adaptability by generating in-domain pseudo-parallel data that contains sentence-structural knowledge, paying less attention to the in-domain lexical knowledge, which may lead to poor translation of unseen in-domain words. In this paper, we propose an Iterative Constrained Back-Translation (ICBT) method to incorporate in-domain lexical knowledge on the basis of BT for unsupervised domain adaptation of NMT. Specifically, we apply lexical constraints into back-translation to generate pseudo-parallel data with in-domain lexical knowledge, and then perform round-trip iterations to incorporate more lexical knowledge. Based on this, we further explore sampling strategies of constrained words in ICBT to introduce more targeted lexical knowledge, via domain specificity and confidence estimation. Experimental results on four domains show that our approach achieves state-of-the-art results, improving the BLEU score by up to 3.08 compared to the strongest baseline, which demonstrates the effectiveness of our approach.
This paper presents the BJTU-Toshiba joint submission for WMT 2022 quality estimation shared task. We only participate in Task 1 (quality prediction) of the shared task, focusing on the sentence-level MQM prediction. The techniques we experimented with include the integration of monolingual language models and the pre-finetuning of pre-trained representations. We tried two styles of pre-finetuning, namely Translation Language Modeling and Replaced Token Detection. We demonstrate the competitiveness of our system compared to the widely adopted XLM-RoBERTa baseline. Our system is also the top-ranking system on the Sentence-level MQM Prediction for the English-German language pairs.
Translation suggestion (TS) models are used to automatically provide alternative suggestions for incorrect spans in sentences generated by machine translation. This paper introduces the system used in our submission to the WMT’22 Translation Suggestion shared task. Our system is based on the ensemble of different translation architectures, including Transformer, SA-Transformer, and DynamicConv. We use three strategies to construct synthetic data from parallel corpora to compensate for the lack of supervised data. In addition, we introduce a multi-phase pre-training strategy, adding an additional pre-training phase with in-domain data. We rank second and third on the English-German and English-Chinese bidirectional tasks, respectively.
Implicit event argument extraction (EAE) is a crucial document-level information extraction task that aims to identify event arguments beyond the sentence level. Despite many efforts for this task, the lack of enough training data has long impeded the study. In this paper, we take a new perspective to address the data sparsity issue faced by implicit EAE, by bridging the task with machine reading comprehension (MRC). Particularly, we devise two data augmentation regimes via MRC, including: 1) implicit knowledge transfer, which enables knowledge transfer from other tasks, by building a unified training framework in the MRC formulation, and 2) explicit data augmentation, which can explicitly generate new training examples, by treating MRC models as an annotator. The extensive experiments have justified the effectiveness of our approach — it not only obtains state-of-the-art performance on two benchmarks, but also demonstrates superior results in a data-low scenario.
Aspect category sentiment analysis has attracted increasing research attention. The dominant methods make use of pre-trained language models by learning effective aspect category-specific representations, and adding specific output layers to its pre-trained representation. We consider a more direct way of making use of pre-trained language models, by casting the ACSA tasks into natural language generation tasks, using natural language sentences to represent the output. Our method allows more direct use of pre-trained knowledge in seq2seq language models by directly following the task setting during pre-training. Experiments on several benchmarks show that our method gives the best reported results, having large advantages in few-shot and zero-shot settings.
Recent multilingual pre-trained models, like XLM-RoBERTa (XLM-R), have been demonstrated effective in many cross-lingual tasks. However, there are still gaps between the contextualized representations of similar words in different languages. To solve this problem, we propose a novel framework named Multi-View Mixed Language Training (MVMLT), which leverages code-switched data with multi-view learning to fine-tune XLM-R. MVMLT uses gradient-based saliency to extract keywords which are the most relevant to downstream tasks and replaces them with the corresponding words in the target language dynamically. Furthermore, MVMLT utilizes multi-view learning to encourage contextualized embeddings to align into a more refined language-invariant space. Extensive experiments with four languages show that our model achieves state-of-the-art results on zero-shot cross-lingual sentiment classification and dialogue state tracking tasks, demonstrating the effectiveness of our proposed model.
Event detection (ED) aims to identify and classify event triggers in texts, which is a crucial subtask of event extraction (EE). Despite many advances in ED, the existing studies are typically centered on improving the overall performance of an ED model, which rarely consider the robustness of an ED model. This paper aims to fill this research gap by stressing the importance of robustness modeling in ED models. We first pinpoint three stark cases demonstrating the brittleness of the existing ED models. After analyzing the underlying reason, we propose a new training mechanism, called context-selective mask generalization for ED, which can effectively mine context-specific patterns for learning and robustify an ED model. The experimental results have confirmed the effectiveness of our model regarding defending against adversarial attacks, exploring unseen predicates, and tackling ambiguity cases. Moreover, a deeper analysis suggests that our approach can learn a complementary predictive bias with most ED models that use full context for feature learning.
Question answering over dialogue, a specialized machine reading comprehension task, aims to comprehend a dialogue and to answer specific questions. Despite many advances, existing approaches for this task did not consider dialogue structure and background knowledge (e.g., relationships between speakers). In this paper, we introduce a new approach for the task, featured by its novelty in structuring dialogue and integrating background knowledge for reasoning. Specifically, different from previous “structure-less” approaches, our method organizes a dialogue as a “relational graph”, using edges to represent relationships between entities. To encode this relational graph, we devise a relational graph convolutional network (R-GCN), which can traverse the graph’s topological structure and effectively encode multi-relational knowledge for reasoning. The extensive experiments have justified the effectiveness of our approach over competitive baselines. Moreover, a deeper analysis shows that our model is better at tackling complex questions requiring relational reasoning and defending adversarial attacks with distracting sentences.
Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts. Previous methods for EE typically model it as a classification task, which are usually prone to the data scarcity problem. In this paper, we propose a new learning paradigm of EE, by explicitly casting it as a machine reading comprehension problem (MRC). Our approach includes an unsupervised question generation process, which can transfer event schema into a set of natural questions, followed by a BERT-based question-answering process to retrieve answers as EE results. This learning paradigm enables us to strengthen the reasoning process of EE, by introducing sophisticated models in MRC, and relieve the data scarcity problem, by introducing the large-scale datasets in MRC. The empirical results show that: i) our approach attains state-of-the-art performance by considerable margins over previous methods. ii) Our model is excelled in the data-scarce scenario, for example, obtaining 49.8% in F1 for event argument extraction with only 1% data, compared with 2.2% of the previous method. iii) Our model also fits with zero-shot scenarios, achieving 37.0% and 16% in F1 on two datasets without using any EE training data.
The scarcity in annotated data poses a great challenge for event detection (ED). Cross-lingual ED aims to tackle this challenge by transferring knowledge between different languages to boost performance. However, previous cross-lingual methods for ED demonstrated a heavy dependency on parallel resources, which might limit their applicability. In this paper, we propose a new method for cross-lingual ED, demonstrating a minimal dependency on parallel resources. Specifically, to construct a lexical mapping between different languages, we devise a context-dependent translation method; to treat the word order difference problem, we propose a shared syntactic order event detector for multilingual co-training. The efficiency of our method is studied through extensive experiments on two standard datasets. Empirical results indicate that our method is effective in 1) performing cross-lingual transfer concerning different directions and 2) tackling the extremely annotation-poor scenario.