Jerin Mahibha C


2022

pdf
GetSmartMSEC at SemEval-2022 Task 6: Sarcasm Detection using Contextual Word Embedding with Gaussian model for Irony Type Identification
Diksha Krishnan | Jerin Mahibha C | Thenmozhi Durairaj
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Sarcasm refers to the use of words that have different literal and intended meanings. It represents the usage of words that are opposite of what is literally said, especially in order to insult, mock, criticise or irritate someone. These types of statements may be funny or amusing to others but may hurt or annoy the person towards whom it is intended. Identification of sarcastic phrases from social media posts finds its application in different domains like sentiment analysis, opinion mining, author profiling, and harassment detection. We have proposed a model for the shared task iSarcasmEval - Intended Sarcasm Detection in English and Arabic (CITATION) by SemEval-2022 considering the language English based on ELmo embeddings for Subtasks A and C and TF-IDF vectors and Gaussian Naive bayes classifier for Subtask B. The proposed model resulted in a F1 score 0.2012 for sarcastic texts in Subtask A, macro-F1 score of 0.0387 and 0.2794 for Subtasks B and C respectively.

pdf
scubeMSEC@LT-EDI-ACL2022: Detection of Depression using Transformer Models
Sivamanikandan S | Santhosh V | Sanjaykumar N | Jerin Mahibha C | Thenmozhi Durairaj
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Social media platforms play a major role in our day-to-day life and are considered as a virtual friend by many users, who use the social media to share their feelings all day. Many a time, the content which is shared by users on social media replicate their internal life. Nowadays people love to share their daily life incidents like happy or unhappy moments and their feelings in social media and it makes them feel complete and it has become a habit for many users. Social media provides a new chance to identify the feelings of a person through their posts. The aim of the shared task is to develop a model in which the system is capable of analyzing the grammatical markers related to onset and permanent symptoms of depression. We as a team participated in the shared task Detecting Signs of Depression from Social Media Text at LT-EDI 2022- ACL 2022 and we have proposed a model which predicts depression from English social media posts using the data set shared for the task. The prediction is done based on the labels Moderate, Severe and Not Depressed. We have implemented this using different transformer models like DistilBERT, RoBERTa and ALBERT by which we were able to achieve a Macro F1 score of 0.337, 0.457 and 0.387 respectively. Our code is publicly available in the github

pdf
Findings of the Shared Task on Detecting Signs of Depression from Social Media
Kayalvizhi S | Thenmozhi Durairaj | Bharathi Raja Chakravarthi | Jerin Mahibha C
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Social media is considered as a platform whereusers express themselves. The rise of social me-dia as one of humanity’s most important publiccommunication platforms presents a potentialprospect for early identification and manage-ment of mental illness. Depression is one suchillness that can lead to a variety of emotionaland physical problems. It is necessary to mea-sure the level of depression from the socialmedia text to treat them and to avoid the nega-tive consequences. Detecting levels of depres-sion is a challenging task since it involves themindset of the people which can change period-ically. The aim of the DepSign-LT-EDI@ACL-2022 shared task is to classify the social me-dia text into three levels of depression namely“Not Depressed”, “Moderately Depressed”, and“Severely Depressed”. This overview presentsa description on the task, the data set, method-ologies used and an analysis on the results ofthe submissions. The models that were submit-ted as a part of the shared task had used a va-riety of technologies from traditional machinelearning algorithms to deep learning models.It could be observed from the result that thetransformer based models have outperformedthe other models. Among the 31 teams whohad submitted their results for the shared task,the best macro F1-score of 0.583 was obtainedusing transformer based model.