Norwegian has been one of many languages lacking sufficient available text to train quality language models. In an attempt to bridge this gap, we introduce the Norwegian Colossal Corpus (NCC), which comprises 49GB of clean Norwegian textual data containing over 7B words. The NCC is composed of different and varied sources, ranging from books and newspapers to government documents and public reports, showcasing the various uses of the Norwegian language in society. The corpus contains mainly Norwegian Bokmål and Norwegian Nynorsk. Each document in the corpus is tagged with metadata that enables the creation of sub-corpora for specific needs. Its structure makes it easy to combine with large web archives that for licensing reasons could not be distributed together with the NCC. By releasing this corpus openly to the public, we hope to foster the creation of both better Norwegian language models and multilingual language models with support for Norwegian.
In this work, we explore whether the recently demonstrated zero-shot abilities of the T0 model extend to Named Entity Recognition for out-of-distribution languages and time periods. Using a historical newspaper corpus in 3 languages as test-bed, we use prompts to extract possible named entities. Our results show that a naive approach for prompt-based zero-shot multilingual Named Entity Recognition is error-prone, but highlights the potential of such an approach for historical languages lacking labeled datasets. Moreover, we also find that T0-like models can be probed to predict the publication date and language of a document, which could be very relevant for the study of historical texts.
In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokmål and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.