In this paper, we leverage large language models (LLMs) to perform zero-shot text style transfer. We present a prompting method that we call augmented zero-shot learning, which frames style transfer as a sentence rewriting task and requires only a natural language instruction, without model fine-tuning or exemplars in the target style. Augmented zero-shot learning is simple and demonstrates promising results not just on standard style transfer tasks such as sentiment, but also on arbitrary transformations such as ‘make this melodramatic’ or ‘insert a metaphor.’
Pre-trained language models perform well on a variety of linguistic tasks that require symbolic reasoning, raising the question of whether such models implicitly represent abstract symbols and rules. We investigate this question using the case study of BERT’s performance on English subject–verb agreement. Unlike prior work, we train multiple instances of BERT from scratch, allowing us to perform a series of controlled interventions at pre-training time. We show that BERT often generalizes well to subject–verb pairs that never occurred in training, suggesting a degree of rule-governed behavior. We also find, however, that performance is heavily influenced by word frequency, with experiments showing that both the absolute frequency of a verb form, as well as the frequency relative to the alternate inflection, are causally implicated in the predictions BERT makes at inference time. Closer analysis of these frequency effects reveals that BERT’s behavior is consistent with a system that correctly applies the SVA rule in general but struggles to overcome strong training priors and to estimate agreement features (singular vs. plural) on infrequent lexical items.
This paper asks whether extrapolating the hidden space distribution of text examples from one class onto another is a valid inductive bias for data augmentation. To operationalize this question, I propose a simple data augmentation protocol called “good-enough example extrapolation” (GE3). GE3 is lightweight and has no hyperparameters. Applied to three text classification datasets for various data imbalance scenarios, GE3 improves performance more than upsampling and other hidden-space data augmentation methods.
Traditional data augmentation aims to increase the coverage of the input distribution by generating augmented examples that strongly resemble original samples in an online fashion where augmented examples dominate training. In this paper, we propose an alternative perspective—a multi-task view (MTV) of data augmentation—in which the primary task trains on original examples and the auxiliary task trains on augmented examples. In MTV data augmentation, both original and augmented samples are weighted substantively during training, relaxing the constraint that augmented examples must resemble original data and thereby allowing us to apply stronger augmentation functions. In empirical experiments using four common data augmentation techniques on three benchmark text classification datasets, we find that using the MTV leads to higher and more robust performance than traditional augmentation.
The uniform information density (UID) hypothesis, which posits that speakers behaving optimally tend to distribute information uniformly across a linguistic signal, has gained traction in psycholinguistics as an explanation for certain syntactic, morphological, and prosodic choices. In this work, we explore whether the UID hypothesis can be operationalized as an inductive bias for statistical language modeling. Specifically, we augment the canonical MLE objective for training language models with a regularizer that encodes UID. In experiments on ten languages spanning five language families, we find that using UID regularization consistently improves perplexity in language models, having a larger effect when training data is limited. Moreover, via an analysis of generated sequences, we find that UID-regularized language models have other desirable properties, e.g., they generate text that is more lexically diverse. Our results not only suggest that UID is a reasonable inductive bias for language modeling, but also provide an alternative validation of the UID hypothesis using modern-day NLP tools.
Although automated metrics are commonly used to evaluate NLG systems, they often correlate poorly with human judgements. Newer metrics such as BERTScore have addressed many weaknesses in prior metrics such as BLEU and ROUGE, which rely on n-gram matching. These newer methods, however, are still limited in that they do not consider the generation context, so they cannot properly reward generated text that is correct but deviates from the given reference. In this paper, we propose Language Model Augmented Relevance Score (MARS), a new context-aware metric for NLG evaluation. MARS leverages off-the-shelf language models, guided by reinforcement learning, to create augmented references that consider both the generation context and available human references, which are then used as additional references to score generated text. Compared with seven existing metrics in three common NLG tasks, MARS not only achieves higher correlation with human reference judgements, but also differentiates well-formed candidates from adversarial samples to a larger degree.
The complexity loss paradox, which posits that individuals suffering from disease exhibit surprisingly predictable behavioral dynamics, has been observed in a variety of both human and animal physiological systems. The recent advent of online text-based therapy presents a new opportunity to analyze the complexity loss paradox in a novel operationalization: linguistic complexity loss in text-based therapy conversations. In this paper, we analyze linguistic complexity correlates of mental health in the online therapy messages sent between therapists and 7,170 clients who provided 30,437 corresponding survey responses on their anxiety. We found that when clients reported more anxiety, they showed reduced lexical diversity as estimated by the moving average type-token ratio. Therapists, on the other hand, used language of higher reading difficulty, syntactic complexity, and age of acquisition when clients were more anxious. Finally, we found that clients, and to an even greater extent, therapists, exhibited consistent levels of many linguistic complexity measures. These results demonstrate how linguistic analysis of text-based communication can be leveraged as a marker for anxiety, an exciting prospect in a time of both increased online communication and increased mental health issues.
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation—a technique particularly suitable for training with limited data—for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
We present COVID-Q, a set of 1,690 questions about COVID-19 from 13 sources, which we annotate into 15 question categories and 207 question clusters. The most common questions in our dataset asked about transmission, prevention, and societal effects of COVID, and we found that many questions that appeared in multiple sources were not answered by any FAQ websites of reputable organizations such as the CDC and FDA. We post our dataset publicly at https://github.com/JerryWei03/COVID-Q. For classifying questions into 15 categories, a BERT baseline scored 58.1% accuracy when trained on 20 examples per category, and for a question clustering task, a BERT + triplet loss baseline achieved 49.5% accuracy. We hope COVID-Q can help either for direct use in developing applied systems or as a domain-specific resource for model evaluation.
The field of NLP has seen unprecedented achievements in recent years. Most notably, with the advent of large-scale pre-trained Transformer-based language models, such as BERT, there has been a noticeable improvement in text representation. It is, however, unclear whether these improvements translate to noisy user-generated text, such as tweets. In this paper, we present an experimental survey of a wide range of well-known text representation techniques for the task of text clustering on noisy Twitter data. Our results indicate that the more advanced models do not necessarily work best on tweets and that more exploration in this area is needed.
We present EDA: easy data augmentation techniques for boosting performance on text classification tasks. EDA consists of four simple but powerful operations: synonym replacement, random insertion, random swap, and random deletion. On five text classification tasks, we show that EDA improves performance for both convolutional and recurrent neural networks. EDA demonstrates particularly strong results for smaller datasets; on average, across five datasets, training with EDA while using only 50% of the available training set achieved the same accuracy as normal training with all available data. We also performed extensive ablation studies and suggest parameters for practical use.