Janet Pierrehumbert

Also published as: Janet B. Pierrehumbert


2022

pdf
Two Contrasting Data Annotation Paradigms for Subjective NLP Tasks
Paul Rottger | Bertie Vidgen | Dirk Hovy | Janet Pierrehumbert
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Labelled data is the foundation of most natural language processing tasks. However, labelling data is difficult and there often are diverse valid beliefs about what the correct data labels should be. So far, dataset creators have acknowledged annotator subjectivity, but rarely actively managed it in the annotation process. This has led to partly-subjective datasets that fail to serve a clear downstream use. To address this issue, we propose two contrasting paradigms for data annotation. The descriptive paradigm encourages annotator subjectivity, whereas the prescriptive paradigm discourages it. Descriptive annotation allows for the surveying and modelling of different beliefs, whereas prescriptive annotation enables the training of models that consistently apply one belief. We discuss benefits and challenges in implementing both paradigms, and argue that dataset creators should explicitly aim for one or the other to facilitate the intended use of their dataset. Lastly, we conduct an annotation experiment using hate speech data that illustrates the contrast between the two paradigms.

pdf
Forecasting COVID-19 Caseloads Using Unsupervised Embedding Clusters of Social Media Posts
Felix Drinkall | Stefan Zohren | Janet Pierrehumbert
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these clustered embedding features against features extracted from other high-quality datasets. In a threshold-classification task, we show that they outperform all other feature types at predicting upward trend signals, a significant result for infectious disease modelling in areas where epidemiological data is unreliable. Subsequently, in a time-series forecasting task, we fully utilise the predictive power of the caseload and compare the relative strengths of using different supplementary datasets as covariate feature sets in a transformer-based time-series model.

pdf
An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers
Valentin Hofmann | Hinrich Schuetze | Janet Pierrehumbert
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We introduce FLOTA (Few Longest Token Approximation), a simple yet effective method to improve the tokenization of pretrained language models (PLMs). FLOTA uses the vocabulary of a standard tokenizer but tries to preserve the morphological structure of words during tokenization. We evaluate FLOTA on morphological gold segmentations as well as a text classification task, using BERT, GPT-2, and XLNet as example PLMs. FLOTA leads to performance gains, makes inference more efficient, and enhances the robustness of PLMs with respect to whitespace noise.

pdf
Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity
Valentin Hofmann | Xiaowen Dong | Janet Pierrehumbert | Hinrich Schuetze
Findings of the Association for Computational Linguistics: NAACL 2022

The increasing polarization of online political discourse calls for computational tools that automatically detect and monitor ideological divides in social media. We introduce a minimally supervised method that leverages the network structure of online discussion forums, specifically Reddit, to detect polarized concepts. We model polarization along the dimensions of salience and framing, drawing upon insights from moral psychology. Our architecture combines graph neural networks with structured sparsity learning and results in representations for concepts and subreddits that capture temporal ideological dynamics such as right-wing and left-wing radicalization.

2021

pdf
Temporal Adaptation of BERT and Performance on Downstream Document Classification: Insights from Social Media
Paul Röttger | Janet Pierrehumbert
Findings of the Association for Computational Linguistics: EMNLP 2021

Language use differs between domains and even within a domain, language use changes over time. For pre-trained language models like BERT, domain adaptation through continued pre-training has been shown to improve performance on in-domain downstream tasks. In this article, we investigate whether temporal adaptation can bring additional benefits. For this purpose, we introduce a corpus of social media comments sampled over three years. It contains unlabelled data for adaptation and evaluation on an upstream masked language modelling task as well as labelled data for fine-tuning and evaluation on a downstream document classification task. We find that temporality matters for both tasks: temporal adaptation improves upstream and temporal fine-tuning downstream task performance. Time-specific models generally perform better on past than on future test sets, which matches evidence on the bursty usage of topical words. However, adapting BERT to time and domain does not improve performance on the downstream task over only adapting to domain. Token-level analysis shows that temporal adaptation captures event-driven changes in language use in the downstream task, but not those changes that are actually relevant to task performance. Based on our findings, we discuss when temporal adaptation may be more effective.

pdf
HateCheck: Functional Tests for Hate Speech Detection Models
Paul Röttger | Bertie Vidgen | Dong Nguyen | Zeerak Waseem | Helen Margetts | Janet Pierrehumbert
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck’s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.

pdf
Superbizarre Is Not Superb: Derivational Morphology Improves BERT’s Interpretation of Complex Words
Valentin Hofmann | Janet Pierrehumbert | Hinrich Schütze
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

How does the input segmentation of pretrained language models (PLMs) affect their interpretations of complex words? We present the first study investigating this question, taking BERT as the example PLM and focusing on its semantic representations of English derivatives. We show that PLMs can be interpreted as serial dual-route models, i.e., the meanings of complex words are either stored or else need to be computed from the subwords, which implies that maximally meaningful input tokens should allow for the best generalization on new words. This hypothesis is confirmed by a series of semantic probing tasks on which DelBERT (Derivation leveraging BERT), a model with derivational input segmentation, substantially outperforms BERT with WordPiece segmentation. Our results suggest that the generalization capabilities of PLMs could be further improved if a morphologically-informed vocabulary of input tokens were used.

pdf
Dynamic Contextualized Word Embeddings
Valentin Hofmann | Janet Pierrehumbert | Hinrich Schütze
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Static word embeddings that represent words by a single vector cannot capture the variability of word meaning in different linguistic and extralinguistic contexts. Building on prior work on contextualized and dynamic word embeddings, we introduce dynamic contextualized word embeddings that represent words as a function of both linguistic and extralinguistic context. Based on a pretrained language model (PLM), dynamic contextualized word embeddings model time and social space jointly, which makes them attractive for a range of NLP tasks involving semantic variability. We highlight potential application scenarios by means of qualitative and quantitative analyses on four English datasets.

2020

pdf
A Graph Auto-encoder Model of Derivational Morphology
Valentin Hofmann | Hinrich Schütze | Janet Pierrehumbert
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

There has been little work on modeling the morphological well-formedness (MWF) of derivatives, a problem judged to be complex and difficult in linguistics. We present a graph auto-encoder that learns embeddings capturing information about the compatibility of affixes and stems in derivation. The auto-encoder models MWF in English surprisingly well by combining syntactic and semantic information with associative information from the mental lexicon.

pdf
Predicting the Growth of Morphological Families from Social and Linguistic Factors
Valentin Hofmann | Janet Pierrehumbert | Hinrich Schütze
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We present the first study that examines the evolution of morphological families, i.e., sets of morphologically related words such as “trump”, “antitrumpism”, and “detrumpify”, in social media. We introduce the novel task of Morphological Family Expansion Prediction (MFEP) as predicting the increase in the size of a morphological family. We create a ten-year Reddit corpus as a benchmark for MFEP and evaluate a number of baselines on this benchmark. Our experiments demonstrate very good performance on MFEP.

pdf
DagoBERT: Generating Derivational Morphology with a Pretrained Language Model
Valentin Hofmann | Janet Pierrehumbert | Hinrich Schütze
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Can pretrained language models (PLMs) generate derivationally complex words? We present the first study investigating this question, taking BERT as the example PLM. We examine BERT’s derivational capabilities in different settings, ranging from using the unmodified pretrained model to full finetuning. Our best model, DagoBERT (Derivationally and generatively optimized BERT), clearly outperforms the previous state of the art in derivation generation (DG). Furthermore, our experiments show that the input segmentation crucially impacts BERT’s derivational knowledge, suggesting that the performance of PLMs could be further improved if a morphologically informed vocabulary of units were used.

2018

pdf
On Hapax Legomena and Morphological Productivity
Janet Pierrehumbert | Ramon Granell
Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology

Quantifying and predicting morphological productivity is a long-standing challenge in corpus linguistics and psycholinguistics. The same challenge reappears in natural language processing in the context of handling words that were not seen in the training set (out-of-vocabulary, or OOV, words). Prior research showed that a good indicator of the productivity of a morpheme is the number of words involving it that occur exactly once (the hapax legomena). A technical connection was adduced between this result and Good-Turing smoothing, which assigns probability mass to unseen events on the basis of the simplifying assumption that word frequencies are stationary. In a large-scale study of 133 affixes in Wikipedia, we develop evidence that success in fact depends on tapping the frequency range in which the assumptions of Good-Turing are violated.

2014

pdf
Rules, Analogy, and Social Factors Codetermine Past-tense Formation Patterns in English
Péter Rácz | Clayton Beckner | Jennifer B. Hay | Janet B. Pierrehumbert
Proceedings of the 2014 Joint Meeting of SIGMORPHON and SIGFSM

pdf
Using Resource-Rich Languages to Improve Morphological Analysis of Under-Resourced Languages
Peter Baumann | Janet Pierrehumbert
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

The world-wide proliferation of digital communications has created the need for language and speech processing systems for under-resourced languages. Developing such systems is challenging if only small data sets are available, and the problem is exacerbated for languages with highly productive morphology. However, many under-resourced languages are spoken in multi-lingual environments together with at least one resource-rich language and thus have numerous borrowings from resource-rich languages. Based on this insight, we argue that readily available resources from resource-rich languages can be used to bootstrap the morphological analyses of under-resourced languages with complex and productive morphological systems. In a case study of two such languages, Tagalog and Zulu, we show that an easily obtainable English wordlist can be deployed to seed a morphological analysis algorithm from a small training set of conversational transcripts. Our method achieves a precision of 100% and identifies 28 and 66 of the most productive affixes in Tagalog and Zulu, respectively.

2007

pdf
Much ado about nothing: A social network model of Russian paradigmatic gaps
Robert Daland | Andrea D. Sims | Janet Pierrehumbert
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

1997

pdf
Stochastic phonological grammars and acceptability
John Coleman | Janet Pierrehumbert
Computational Phonology: Third Meeting of the ACL Special Interest Group in Computational Phonology

1986

pdf
The Intonational Structuring of Discourse
Julia Hirschberg | Janet Pierrehumbert
24th Annual Meeting of the Association for Computational Linguistics

pdf
Japanese Prosodic Phrasing and Intonation Synthesis
Mary E. Beckman | Janet B. Pierrehumbert
24th Annual Meeting of the Association for Computational Linguistics

1983

pdf
Automatic Recognition of Intonation Patterns
Janet B. Pierrehumbert
21st Annual Meeting of the Association for Computational Linguistics