Jakub Adamek


2022

pdf bib
Text Generation with Text-Editing Models
Eric Malmi | Yue Dong | Jonathan Mallinson | Aleksandr Chuklin | Jakub Adamek | Daniil Mirylenka | Felix Stahlberg | Sebastian Krause | Shankar Kumar | Aliaksei Severyn
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts

Text-editing models have recently become a prominent alternative to seq2seq models for monolingual text-generation tasks such as grammatical error correction, text simplification, and style transfer. These tasks share a common trait – they exhibit a large amount of textual overlap between the source and target texts. Text-editing models take advantage of this observation and learn to generate the output by predicting edit operations applied to the source sequence. In contrast, seq2seq models generate outputs word-by-word from scratch thus making them slow at inference time. Text-editing models provide several benefits over seq2seq models including faster inference speed, higher sample efficiency, and better control and interpretability of the outputs. This tutorial provides a comprehensive overview of the text-edit based models and current state-of-the-art approaches analyzing their pros and cons. We discuss challenges related to deployment and how these models help to mitigate hallucination and bias, both pressing challenges in the field of text generation.

pdf
EdiT5: Semi-Autoregressive Text Editing with T5 Warm-Start
Jonathan Mallinson | Jakub Adamek | Eric Malmi | Aliaksei Severyn
Findings of the Association for Computational Linguistics: EMNLP 2022

We present EdiT5 - a novel semi-autoregressive text-editing approach designed to combine the strengths of non-autoregressive text-editing and autoregressive decoding. EdiT5 is faster at inference times than conventional sequence-to-sequence (seq2seq) models, while being capable of modeling flexible input-output transformations.This is achieved by decomposing the generation process into three sub-tasks: (1) tagging to decide on the subset of input tokens to be preserved in the output, (2) re-ordering to define their order in the output text, and (3) insertion to infill the missing tokens that are not present in the input. The tagging and re-ordering steps, which are responsible for generating the largest portion of the output, are non-autoregressive, while the insertion uses an autoregressive decoder.Depending on the task, EdiT5 requires significantly fewer autoregressive steps demonstrating speedups of up to 25x when compared to classic seq2seq models. Quality-wise, EdiT5 is initialized with a pre-trained T5 checkpoint yielding comparable performance to T5 in high-resource settings and clearly outperforms it on low-resource settings when evaluated on three NLG tasks: Sentence Fusion, Grammatical Error Correction, and Decontextualization.

2020

pdf
Stepwise Extractive Summarization and Planning with Structured Transformers
Shashi Narayan | Joshua Maynez | Jakub Adamek | Daniele Pighin | Blaz Bratanic | Ryan McDonald
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We propose encoder-centric stepwise models for extractive summarization using structured transformers – HiBERT and Extended Transformers. We enable stepwise summarization by injecting the previously generated summary into the structured transformer as an auxiliary sub-structure. Our models are not only efficient in modeling the structure of long inputs, but they also do not rely on task-specific redundancy-aware modeling, making them a general purpose extractive content planner for different tasks. When evaluated on CNN/DailyMail extractive summarization, stepwise models achieve state-of-the-art performance in terms of Rouge without any redundancy aware modeling or sentence filtering. This also holds true for Rotowire table-to-text generation, where our models surpass previously reported metrics for content selection, planning and ordering, highlighting the strength of stepwise modeling. Amongst the two structured transformers we test, stepwise Extended Transformers provides the best performance across both datasets and sets a new standard for these challenges.