Ivan Habernal


2022

pdf
Privacy-Preserving Graph Convolutional Networks for Text Classification
Timour Igamberdiev | Ivan Habernal
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Graph convolutional networks (GCNs) are a powerful architecture for representation learning on documents that naturally occur as graphs, e.g., citation or social networks. However, sensitive personal information, such as documents with people’s profiles or relationships as edges, are prone to privacy leaks, as the trained model might reveal the original input. Although differential privacy (DP) offers a well-founded privacy-preserving framework, GCNs pose theoretical and practical challenges due to their training specifics. We address these challenges by adapting differentially-private gradient-based training to GCNs and conduct experiments using two optimizers on five NLP datasets in two languages. We propose a simple yet efficient method based on random graph splits that not only improves the baseline privacy bounds by a factor of 2.7 while retaining competitive F1 scores, but also provides strong privacy guarantees of epsilon = 1.0. We show that, under certain modeling choices, privacy-preserving GCNs perform up to 90% of their non-private variants, while formally guaranteeing strong privacy measures.

pdf
How reparametrization trick broke differentially-private text representation learning
Ivan Habernal
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

As privacy gains traction in the NLP community, researchers have started adopting various approaches to privacy-preserving methods. One of the favorite privacy frameworks, differential privacy (DP), is perhaps the most compelling thanks to its fundamental theoretical guarantees. Despite the apparent simplicity of the general concept of differential privacy, it seems non-trivial to get it right when applying it to NLP. In this short paper, we formally analyze several recent NLP papers proposing text representation learning using DPText (Beigi et al., 2019a,b; Alnasser et al., 2021; Beigi et al., 2021) and reveal their false claims of being differentially private. Furthermore, we also show a simple yet general empirical sanity check to determine whether a given implementation of a DP mechanism almost certainly violates the privacy loss guarantees. Our main goal is to raise awareness and help the community understand potential pitfalls of applying differential privacy to text representation learning.

pdf bib
Proceedings of the Fourth Workshop on Privacy in Natural Language Processing
Oluwaseyi Feyisetan | Sepideh Ghanavati | Patricia Thaine | Ivan Habernal | Fatemehsadat Mireshghallah
Proceedings of the Fourth Workshop on Privacy in Natural Language Processing

pdf
One size does not fit all: Investigating strategies for differentially-private learning across NLP tasks
Manuel Senge | Timour Igamberdiev | Ivan Habernal
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Preserving privacy in contemporary NLP models allows us to work with sensitive data, but unfortunately comes at a price. We know that stricter privacy guarantees in differentially-private stochastic gradient descent (DP-SGD) generally degrade model performance. However, previous research on the efficiency of DP-SGD in NLP is inconclusive or even counter-intuitive. In this short paper, we provide an extensive analysis of different privacy preserving strategies on seven downstream datasets in five different ‘typical’ NLP tasks with varying complexity using modern neural models based on BERT and XtremeDistil architectures. We show that unlike standard non-private approaches to solving NLP tasks, where bigger is usually better, privacy-preserving strategies do not exhibit a winning pattern, and each task and privacy regime requires a special treatment to achieve adequate performance.

pdf
Privacy-Preserving Models for Legal Natural Language Processing
Ying Yin | Ivan Habernal
Proceedings of the Natural Legal Language Processing Workshop 2022

Pre-training large transformer models with in-domain data improves domain adaptation and helps gain performance on the domain-specific downstream tasks. However, sharing models pre-trained on potentially sensitive data is prone to adversarial privacy attacks. In this paper, we asked to which extent we can guarantee privacy of pre-training data and, at the same time, achieve better downstream performance on legal tasks without the need of additional labeled data. We extensively experiment with scalable self-supervised learning of transformer models under the formal paradigm of differential privacy and show that under specific training configurations we can improve downstream performance without sacrifying privacy protection for the in-domain data. Our main contribution is utilizing differential privacy for large-scale pre-training of transformer language models in the legal NLP domain, which, to the best of our knowledge, has not been addressed before.

pdf
The Legal Argument Reasoning Task in Civil Procedure
Leonard Bongard | Lena Held | Ivan Habernal
Proceedings of the Natural Legal Language Processing Workshop 2022

We present a new NLP task and dataset from the domain of the U.S. civil procedure. Each instance of the dataset consists of a general introduction to the case, a particular question, and a possible solution argument, accompanied by a detailed analysis of why the argument applies in that case. Since the dataset is based on a book aimed at law students, we believe that it represents a truly complex task for benchmarking modern legal language models. Our baseline evaluation shows that fine-tuning a legal transformer provides some advantage over random baseline models, but our analysis reveals that the actual ability to infer legal arguments remains a challenging open research question.

pdf
DP-Rewrite: Towards Reproducibility and Transparency in Differentially Private Text Rewriting
Timour Igamberdiev | Thomas Arnold | Ivan Habernal
Proceedings of the 29th International Conference on Computational Linguistics

Text rewriting with differential privacy (DP) provides concrete theoretical guarantees for protecting the privacy of individuals in textual documents. In practice, existing systems may lack the means to validate their privacy-preserving claims, leading to problems of transparency and reproducibility. We introduce DP-Rewrite, an open-source framework for differentially private text rewriting which aims to solve these problems by being modular, extensible, and highly customizable. Our system incorporates a variety of downstream datasets, models, pre-training procedures, and evaluation metrics to provide a flexible way to lead and validate private text rewriting research. To demonstrate our software in practice, we provide a set of experiments as a case study on the ADePT DP text rewriting system, detecting a privacy leak in its pre-training approach. Our system is publicly available, and we hope that it will help the community to make DP text rewriting research more accessible and transparent.

2021

pdf
When differential privacy meets NLP: The devil is in the detail
Ivan Habernal
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Differential privacy provides a formal approach to privacy of individuals. Applications of differential privacy in various scenarios, such as protecting users’ original utterances, must satisfy certain mathematical properties. Our contribution is a formal analysis of ADePT, a differentially private auto-encoder for text rewriting (Krishna et al, 2021). ADePT achieves promising results on downstream tasks while providing tight privacy guarantees. Our proof reveals that ADePT is not differentially private, thus rendering the experimental results unsubstantiated. We also quantify the impact of the error in its private mechanism, showing that the true sensitivity is higher by at least factor 6 in an optimistic case of a very small encoder’s dimension and that the amount of utterances that are not privatized could easily reach 100% of the entire dataset. Our intention is neither to criticize the authors, nor the peer-reviewing process, but rather point out that if differential privacy applications in NLP rely on formal guarantees, these should be outlined in full and put under detailed scrutiny.

pdf bib
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts
Isabelle Augenstein | Ivan Habernal
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

2020

pdf
Why do you think that? Exploring Faithful Sentence-Level Rationales Without Supervision
Max Glockner | Ivan Habernal | Iryna Gurevych
Findings of the Association for Computational Linguistics: EMNLP 2020

Evaluating the trustworthiness of a model’s prediction is essential for differentiating between ‘right for the right reasons’ and ‘right for the wrong reasons’. Identifying textual spans that determine the target label, known as faithful rationales, usually relies on pipeline approaches or reinforcement learning. However, such methods either require supervision and thus costly annotation of the rationales or employ non-differentiable models. We propose a differentiable training–framework to create models which output faithful rationales on a sentence level, by solely applying supervision on the target task. To achieve this, our model solves the task based on each rationale individually and learns to assign high scores to those which solved the task best. Our evaluation on three different datasets shows competitive results compared to a standard BERT blackbox while exceeding a pipeline counterpart’s performance in two cases. We further exploit the transparent decision–making process of these models to prefer selecting the correct rationales by applying direct supervision, thereby boosting the performance on the rationale–level.

2018

pdf
Adapting Serious Game for Fallacious Argumentation to German: Pitfalls, Insights, and Best Practices
Ivan Habernal | Patrick Pauli | Iryna Gurevych
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
Ivan Habernal | Henning Wachsmuth | Iryna Gurevych | Benno Stein
Proceedings of the 12th International Workshop on Semantic Evaluation

A natural language argument is composed of a claim as well as reasons given as premises for the claim. The warrant explaining the reasoning is usually left implicit, as it is clear from the context and common sense. This makes a comprehension of arguments easy for humans but hard for machines. This paper summarizes the first shared task on argument reasoning comprehension. Given a premise and a claim along with some topic information, the goal was to automatically identify the correct warrant among two candidates that are plausible and lexically close, but in fact imply opposite claims. We describe the dataset with 1970 instances that we built for the task, and we outline the 21 computational approaches that participated, most of which used neural networks. The results reveal the complexity of the task, with many approaches hardly improving over the random accuracy of about 0.5. Still, the best observed accuracy (0.712) underlines the principle feasibility of identifying warrants. Our analysis indicates that an inclusion of external knowledge is key to reasoning comprehension.

pdf
Before Name-Calling: Dynamics and Triggers of Ad Hominem Fallacies in Web Argumentation
Ivan Habernal | Henning Wachsmuth | Iryna Gurevych | Benno Stein
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Arguing without committing a fallacy is one of the main requirements of an ideal debate. But even when debating rules are strictly enforced and fallacious arguments punished, arguers often lapse into attacking the opponent by an ad hominem argument. As existing research lacks solid empirical investigation of the typology of ad hominem arguments as well as their potential causes, this paper fills this gap by (1) performing several large-scale annotation studies, (2) experimenting with various neural architectures and validating our working hypotheses, such as controversy or reasonableness, and (3) providing linguistic insights into triggers of ad hominem using explainable neural network architectures.

pdf
The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants
Ivan Habernal | Henning Wachsmuth | Iryna Gurevych | Benno Stein
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Reasoning is a crucial part of natural language argumentation. To comprehend an argument, one must analyze its warrant, which explains why its claim follows from its premises. As arguments are highly contextualized, warrants are usually presupposed and left implicit. Thus, the comprehension does not only require language understanding and logic skills, but also depends on common sense. In this paper we develop a methodology for reconstructing warrants systematically. We operationalize it in a scalable crowdsourcing process, resulting in a freely licensed dataset with warrants for 2k authentic arguments from news comments. On this basis, we present a new challenging task, the argument reasoning comprehension task. Given an argument with a claim and a premise, the goal is to choose the correct implicit warrant from two options. Both warrants are plausible and lexically close, but lead to contradicting claims. A solution to this task will define a substantial step towards automatic warrant reconstruction. However, experiments with several neural attention and language models reveal that current approaches do not suffice.

pdf
Computational Argumentation: A Journey Beyond Semantics, Logic, Opinions, and Easy Tasks
Ivan Habernal
Proceedings of the Workshop on Computational Semantics beyond Events and Roles

The classical view on argumentation, such that arguments are logical structures consisting of different distinguishable parts and that parties exchange arguments in a rational way, is prevalent in textbooks but nonexistent in the real world. Instead, argumentation is a multifaceted communication tool built upon humans’ capabilities to easily use common sense, emotions, and social context. As humans, we are pretty good at it. Computational Argumentation tries to tackle these phenomena but has a long and not so easy way to go. In this talk, I would like to shed a light on several recent attempts to deal with argumentation computationally, such as addressing argument quality, understanding argument reasoning, dealing with fallacies, and how should we never ever argue online.

2017

pdf bib
Proceedings of the 4th Workshop on Argument Mining
Ivan Habernal | Iryna Gurevych | Kevin Ashley | Claire Cardie | Nancy Green | Diane Litman | Georgios Petasis | Chris Reed | Noam Slonim | Vern Walker
Proceedings of the 4th Workshop on Argument Mining

pdf
Argumentation Mining in User-Generated Web Discourse
Ivan Habernal | Iryna Gurevych
Computational Linguistics, Volume 43, Issue 1 - April 2017

The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people’s argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.

pdf
Argumentation Quality Assessment: Theory vs. Practice
Henning Wachsmuth | Nona Naderi | Ivan Habernal | Yufang Hou | Graeme Hirst | Iryna Gurevych | Benno Stein
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Argumentation quality is viewed differently in argumentation theory and in practical assessment approaches. This paper studies to what extent the views match empirically. We find that most observations on quality phrased spontaneously are in fact adequately represented by theory. Even more, relative comparisons of arguments in practice correlate with absolute quality ratings based on theory. Our results clarify how the two views can learn from each other.

pdf
What is the Essence of a Claim? Cross-Domain Claim Identification
Johannes Daxenberger | Steffen Eger | Ivan Habernal | Christian Stab | Iryna Gurevych
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Argument mining has become a popular research area in NLP. It typically includes the identification of argumentative components, e.g. claims, as the central component of an argument. We perform a qualitative analysis across six different datasets and show that these appear to conceptualize claims quite differently. To learn about the consequences of such different conceptualizations of claim for practical applications, we carried out extensive experiments using state-of-the-art feature-rich and deep learning systems, to identify claims in a cross-domain fashion. While the divergent conceptualization of claims in different datasets is indeed harmful to cross-domain classification, we show that there are shared properties on the lexical level as well as system configurations that can help to overcome these gaps.

pdf bib
Argotario: Computational Argumentation Meets Serious Games
Ivan Habernal | Raffael Hannemann | Christian Pollak | Christopher Klamm | Patrick Pauli | Iryna Gurevych
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

An important skill in critical thinking and argumentation is the ability to spot and recognize fallacies. Fallacious arguments, omnipresent in argumentative discourse, can be deceptive, manipulative, or simply leading to ‘wrong moves’ in a discussion. Despite their importance, argumentation scholars and NLP researchers with focus on argumentation quality have not yet investigated fallacies empirically. The nonexistence of resources dealing with fallacious argumentation calls for scalable approaches to data acquisition and annotation, for which the serious games methodology offers an appealing, yet unexplored, alternative. We present Argotario, a serious game that deals with fallacies in everyday argumentation. Argotario is a multilingual, open-source, platform-independent application with strong educational aspects, accessible at www.argotario.net.

2016

pdf
What makes a convincing argument? Empirical analysis and detecting attributes of convincingness in Web argumentation
Ivan Habernal | Iryna Gurevych
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf
Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM
Ivan Habernal | Iryna Gurevych
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf
C4Corpus: Multilingual Web-size Corpus with Free License
Ivan Habernal | Omnia Zayed | Iryna Gurevych
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Large Web corpora containing full documents with permissive licenses are crucial for many NLP tasks. In this article we present the construction of 12 million-pages Web corpus (over 10 billion tokens) licensed under CreativeCommons license family in 50+ languages that has been extracted from CommonCrawl, the largest publicly available general Web crawl to date with about 2 billion crawled URLs. Our highly-scalable Hadoop-based framework is able to process the full CommonCrawl corpus on 2000+ CPU cluster on the Amazon Elastic Map/Reduce infrastructure. The processing pipeline includes license identification, state-of-the-art boilerplate removal, exact duplicate and near-duplicate document removal, and language detection. The construction of the corpus is highly configurable and fully reproducible, and we provide both the framework (DKPro C4CorpusTools) and the resulting data (C4Corpus) to the research community.

pdf
Crowdsourcing a Large Dataset of Domain-Specific Context-Sensitive Semantic Verb Relations
Maria Sukhareva | Judith Eckle-Kohler | Ivan Habernal | Iryna Gurevych
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

We present a new large dataset of 12403 context-sensitive verb relations manually annotated via crowdsourcing. These relations capture fine-grained semantic information between verb-centric propositions, such as temporal or entailment relations. We propose a novel semantic verb relation scheme and design a multi-step annotation approach for scaling-up the annotations using crowdsourcing. We employ several quality measures and report on agreement scores. The resulting dataset is available under a permissive CreativeCommons license at www.ukp.tu-darmstadt.de/data/verb-relations/. It represents a valuable resource for various applications, such as automatic information consolidation or automatic summarization.

2015

pdf
Exploiting Debate Portals for Semi-Supervised Argumentation Mining in User-Generated Web Discourse
Ivan Habernal | Iryna Gurevych
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf
Sarcasm Detection on Czech and English Twitter
Tomáš Ptáček | Ivan Habernal | Jun Hong
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf
Sentiment Analysis in Czech Social Media Using Supervised Machine Learning
Ivan Habernal | Tomáš Ptáček | Josef Steinberger
Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

pdf
Unsupervised Improving of Sentiment Analysis Using Global Target Context
Tomáš Brychcín | Ivan Habernal
Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013