Speech interfaces for argumentative dialogue systems (ADS) are rather scarce. The complex task they pursue hinders the application of common natural language understanding (NLU) approaches in this domain. To address this issue we include an adaption of a recently introduced NLU framework tailored to argumentative tasks into a complete ADS. We evaluate the likeability and motivation of users to interact with the new system in a user study. Therefore, we compare it to a solid baseline utilizing a drop-down menu. The results indicate that the integration of a flexible NLU framework enables a far more natural and satisfying interaction with human users in real-time. Even though the drop-down menu convinces regarding its robustness, the willingness to use the new system is significantly higher. Hence, the featured NLU framework provides a sound basis to build an intuitive interface which can be extended to adapt its behavior to the individual user.
Despite the remarkable progress in the field of computational argumentation, dialogue systems concerned with argumentative tasks often rely on structured knowledge about arguments and their relations. Since the manual acquisition of these argument structures is highly time-consuming, the corresponding systems are inflexible regarding the topics they can discuss. To address this issue, we propose a combination of argumentative dialogue systems with argument search technology that enables a system to discuss any topic on which the search engine is able to find suitable arguments. Our approach utilizes supervised learning-based relation classification to map the retrieved arguments into a general tree structure for use in dialogue systems. We evaluate the approach with a state of the art search engine and a recently introduced dialogue model in an extensive user study with respect to the dialogue coherence. The results vary between the investigated topics (and hence depend on the quality of the underlying data) but are in some instances surprisingly close to the results achieved with a manually annotated argument structure.
We present a neural network approach to estimate the communication style of spoken interaction, namely the stylistic variations elaborateness and directness, and investigate which type of input features to the estimator are necessary to achive good performance. First, we describe our annotated corpus of recordings in the health care domain and analyse the corpus statistics in terms of agreement, correlation and reliability of the ratings. We use this corpus to estimate the elaborateness and the directness of each utterance. We test different feature sets consisting of dialogue act features, grammatical features and linguistic features as input for our classifier and perform classification in two and three classes. Our classifiers use only features that can be automatically derived during an ongoing interaction in any spoken dialogue system without any prior annotation. Our results show that the elaborateness can be classified by only using the dialogue act and the amount of words contained in the corresponding utterance. The directness is a more difficult classification task and additional linguistic features in form of word embeddings improve the classification results. Afterwards, we run a comparison with a support vector machine and a recurrent neural network classifier.