Ignacio Castro


2022

pdf
MMVAE at SemEval-2022 Task 5: A Multi-modal Multi-task VAE on Misogynous Meme Detection
Yimeng Gu | Ignacio Castro | Gareth Tyson
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

Nowadays, memes have become quite common in day-to-day communications on social media platforms. They appear to be amusing, evoking and attractive to audiences. However, some memes containing malicious contents can be harmful to the targeted group and arouse public anger in the long run. In this paper, we study misogynous meme detection, a shared task in SemEval 2022 - Multimedia Automatic Misogyny Identification (MAMI). The challenge of misogynous meme detection is to co-represent multi-modal features. To tackle with this challenge, we propose a Multi-modal Multi-task Variational AutoEncoder (MMVAE) to learn an effective co-representation of visual and textual features in the latent space, and determine if the meme contains misogynous information and identify its fine-grained categories. Our model achieves 0.723 on sub-task A and 0.634 on sub-task B in terms of F1 scores. We carry out comprehensive experiments on our model’s architecture and show that our approach significantly outperforms several strong uni-modal and multi-modal approaches. Our code is released on github.

2021

pdf
Racist or Sexist Meme? Classifying Memes beyond Hateful
Haris Bin Zia | Ignacio Castro | Gareth Tyson
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Memes are the combinations of text and images that are often humorous in nature. But, that may not always be the case, and certain combinations of texts and images may depict hate, referred to as hateful memes. This work presents a multimodal pipeline that takes both visual and textual features from memes into account to (1) identify the protected category (e.g. race, sex etc.) that has been attacked; and (2) detect the type of attack (e.g. contempt, slurs etc.). Our pipeline uses state-of-the-art pre-trained visual and textual representations, followed by a simple logistic regression classifier. We employ our pipeline on the Hateful Memes Challenge dataset with additional newly created fine-grained labels for protected category and type of attack. Our best model achieves an AUROC of 0.96 for identifying the protected category, and 0.97 for detecting the type of attack. We release our code at https://github.com/harisbinzia/HatefulMemes