Ian Magnusson


2022

pdf
Just-DREAM-about-it: Figurative Language Understanding with DREAM-FLUTE
Yuling Gu | Yao Fu | Valentina Pyatkin | Ian Magnusson | Bhavana Dalvi Mishra | Peter Clark
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)

Figurative language (e.g., “he flew like the wind”) is challenging to understand, as it is hard to tell what implicit information is being conveyed from the surface form alone. We hypothesize that to perform this task well, the reader needs to mentally elaborate the scene being described to identify a sensible meaning of the language. We present DREAM-FLUTE, a figurative language understanding system that does this, first forming a “mental model” of situations described in a premise and hypothesis before making an entailment/contradiction decision and generating an explanation. DREAM-FLUTE uses an existing scene elaboration model, DREAM, for constructing its “mental model.” In the FigLang2022 Shared Task evaluation, DREAM-FLUTE achieved (joint) first place (Acc@60=63.3%), and can perform even better with ensemble techniques, demonstrating the effectiveness of this approach. More generally, this work suggests that adding a reflective component to pretrained language models can improve their performance beyond standard fine-tuning (3.3% improvement in Acc@60).

pdf
Exploring The Landscape of Distributional Robustness for Question Answering Models
Anas Awadalla | Mitchell Wortsman | Gabriel Ilharco | Sewon Min | Ian Magnusson | Hannaneh Hajishirzi | Ludwig Schmidt
Findings of the Association for Computational Linguistics: EMNLP 2022

We conduct a large empirical evaluation to investigate the landscape of distributional robustness in question answering. Our investigation spans over 350 models and 16 question answering datasets, including a diverse set of architectures, model sizes, and adaptation methods (e.g., fine-tuning, adapter tuning, in-context learning, etc.). We find that, in many cases, model variations do not affect robustness and in-distribution performance alone determines out-of-distribution performance.Moreover, our findings indicate thati) zero-shot and in-context learning methods are more robust to distribution shifts than fully fine-tuned models;ii) few-shot prompt fine-tuned models exhibit better robustness than few-shot fine-tuned span prediction models;iii) parameter-efficient and robustness enhancing training methods provide no significant robustness improvements.In addition, we publicly release all evaluations to encourage researchers to further analyze robustness trends for question answering models.

pdf
Towards a Multi-Entity Aspect-Based Sentiment Analysis for Characterizing Directed Social Regard in Online Messaging
Joan Zheng | Scott Friedman | Sonja Schmer-galunder | Ian Magnusson | Ruta Wheelock | Jeremy Gottlieb | Diana Gomez | Christopher Miller
Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)

Online messaging is dynamic, influential, and highly contextual, and a single post may contain contrasting sentiments towards multiple entities, such as dehumanizing one actor while empathizing with another in the same message.These complexities are important to capture for understanding the systematic abuse voiced within an online community, or for determining whether individuals are advocating for abuse, opposing abuse, or simply reporting abuse. In this work, we describe a formulation of directed social regard (DSR) as a problem of multi-entity aspect-based sentiment analysis (ME-ABSA), which models the degree of intensity of multiple sentiments that are associated with entities described by a text document. Our DSR schema is informed by Bandura’s psychosocial theory of moral disengagement and by recent work in ABSA. We present a dataset of over 2,900 posts and sentences, comprising over 24,000 entities annotated for DSR over nine psychosocial dimensions by three annotators. We present a novel transformer-based ME-ABSA model for DSR, achieving favorable preliminary results on this dataset.

2021

pdf
Extracting Fine-Grained Knowledge Graphs of Scientific Claims: Dataset and Transformer-Based Results
Ian Magnusson | Scott Friedman
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent transformer-based approaches demonstrate promising results on relational scientific information extraction. Existing datasets focus on high-level description of how research is carried out. Instead we focus on the subtleties of how experimental associations are presented by building SciClaim, a dataset of scientific claims drawn from Social and Behavior Science (SBS), PubMed, and CORD-19 papers. Our novel graph annotation schema incorporates not only coarse-grained entity spans as nodes and relations as edges between them, but also fine-grained attributes that modify entities and their relations, for a total of 12,738 labels in the corpus. By including more label types and more than twice the label density of previous datasets, SciClaim captures causal, comparative, predictive, statistical, and proportional associations over experimental variables along with their qualifications, subtypes, and evidence. We extend work in transformer-based joint entity and relation extraction to effectively infer our schema, showing the promise of fine-grained knowledge graphs in scientific claims and beyond.