Hwa-Yeon Kim


Fast Bilingual Grapheme-To-Phoneme Conversion
Hwa-Yeon Kim | Jong-Hwan Kim | Jae-Min Kim
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Autoregressive transformer (ART)-based grapheme-to-phoneme (G2P) models have been proposed for bi/multilingual text-to-speech systems. Although they have achieved great success, they suffer from high inference latency in real-time industrial applications, especially processing long sentence. In this paper, we propose a fast and high-performance bilingual G2P model. For fast and exact decoding, we used a non-autoregressive structured transformer-based architecture and data augmentation for predicting output length. Our model achieved better performance than that of the previous autoregressive model and about 2700% faster inference speed.


Data Augmentation by Data Noising for Open-vocabulary Slots in Spoken Language Understanding
Hwa-Yeon Kim | Yoon-Hyung Roh | Young-Kil Kim
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

One of the main challenges in Spoken Language Understanding (SLU) is dealing with ‘open-vocabulary’ slots. Recently, SLU models based on neural network were proposed, but it is still difficult to recognize the slots of unknown words or ‘open-vocabulary’ slots because of the high cost of creating a manually tagged SLU dataset. This paper proposes data noising, which reflects the characteristics of the ‘open-vocabulary’ slots, for data augmentation. We applied it to an attention based bi-directional recurrent neural network (Liu and Lane, 2016) and experimented with three datasets: Airline Travel Information System (ATIS), Snips, and MIT-Restaurant. We achieved performance improvements of up to 0.57% and 3.25 in intent prediction (accuracy) and slot filling (f1-score), respectively. Our method is advantageous because it does not require additional memory and it can be applied simultaneously with the training process of the model.