We exploit the pre-trained seq2seq model mBART for multilingual text style transfer. Using machine translated data as well as gold aligned English sentences yields state-of-the-art results in the three target languages we consider. Besides, in view of the general scarcity of parallel data, we propose a modular approach for multilingual formality transfer, which consists of two training strategies that target adaptation to both language and task. Our approach achieves competitive performance without monolingual task-specific parallel data and can be applied to other style transfer tasks as well as to other languages.
Although text style transfer has witnessed rapid development in recent years, there is as yet no established standard for evaluation, which is performed using several automatic metrics, lacking the possibility of always resorting to human judgement. We focus on the task of formality transfer, and on the three aspects that are usually evaluated: style strength, content preservation, and fluency. To cast light on how such aspects are assessed by common and new metrics, we run a human-based evaluation and perform a rich correlation analysis. We are then able to offer some recommendations on the use of such metrics in formality transfer, also with an eye to their generalisability (or not) to related tasks.
Figurative language generation is the task of reformulating a given text in the desired figure of speech while still being faithful to the original context. We take the first step towards multi-figurative language modelling by providing a benchmark for the automatic generation of five common figurative forms in English. We train mFLAG employing a scheme for multi-figurative language pre-training on top of BART, and a mechanism for injecting the target figurative information into the encoder; this enables the generation of text with the target figurative form from another figurative form without parallel figurative-figurative sentence pairs. Our approach outperforms all strong baselines. We also offer some qualitative analysis and reflections on the relationship between the different figures of speech.
Style transfer aims to rewrite a source text in a different target style while preserving its content. We propose a novel approach to this task that leverages generic resources, and without using any task-specific parallel (source–target) data outperforms existing unsupervised approaches on the two most popular style transfer tasks: formality transfer and polarity swap. In practice, we adopt a multi-step procedure which builds on a generic pre-trained sequence-to-sequence model (BART). First, we strengthen the model’s ability to rewrite by further pre-training BART on both an existing collection of generic paraphrases, as well as on synthetic pairs created using a general-purpose lexical resource. Second, through an iterative back-translation approach, we train two models, each in a transfer direction, so that they can provide each other with synthetically generated pairs, dynamically in the training process. Lastly, we let our best resulting model generate static synthetic pairs to be used in a supervised training regime. Besides methodology and state-of-the-art results, a core contribution of this work is a reflection on the nature of the two tasks we address, and how their differences are highlighted by their response to our approach.
We ask subjects whether they perceive as human-produced a bunch of texts, some of which are actually human-written, while others are automatically generated. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that this fine-tuned model produces texts that are indeed perceived more human-like than the original model. Contextually, we show that our automatic evaluation strategy well correlates with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.
Scarcity of parallel data causes formality style transfer models to have scarce success in preserving content. We show that fine-tuning pre-trained language (GPT-2) and sequence-to-sequence (BART) models boosts content preservation, and that this is possible even with limited amounts of parallel data. Augmenting these models with rewards that target style and content –the two core aspects of the task– we achieve a new state-of-the-art.
An ongoing debate in the NLG community concerns the best way to evaluate systems, with human evaluation often being considered the most reliable method, compared to corpus-based metrics. However, tasks involving subtle textual differences, such as style transfer, tend to be hard for humans to perform. In this paper, we propose an evaluation method for this task based on purposely-trained classifiers, showing that it better reflects system differences than traditional metrics such as BLEU.