Hui Huang


Iterative Constrained Back-Translation for Unsupervised Domain Adaptation of Machine Translation
Hongxiao Zhang | Hui Huang | Jiale Gao | Yufeng Chen | Jinan Xu | Jian Liu
Proceedings of the 29th International Conference on Computational Linguistics

Back-translation has been proven to be effective in unsupervised domain adaptation of neural machine translation (NMT). However, the existing back-translation methods mainly improve domain adaptability by generating in-domain pseudo-parallel data that contains sentence-structural knowledge, paying less attention to the in-domain lexical knowledge, which may lead to poor translation of unseen in-domain words. In this paper, we propose an Iterative Constrained Back-Translation (ICBT) method to incorporate in-domain lexical knowledge on the basis of BT for unsupervised domain adaptation of NMT. Specifically, we apply lexical constraints into back-translation to generate pseudo-parallel data with in-domain lexical knowledge, and then perform round-trip iterations to incorporate more lexical knowledge. Based on this, we further explore sampling strategies of constrained words in ICBT to introduce more targeted lexical knowledge, via domain specificity and confidence estimation. Experimental results on four domains show that our approach achieves state-of-the-art results, improving the BLEU score by up to 3.08 compared to the strongest baseline, which demonstrates the effectiveness of our approach.

BJTU-Toshiba’s Submission to WMT22 Quality Estimation Shared Task
Hui Huang | Hui Di | Chunyou Li | Hanming Wu | Kazushige Ouchi | Yufeng Chen | Jian Liu | Jinan Xu
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper presents the BJTU-Toshiba joint submission for WMT 2022 quality estimation shared task. We only participate in Task 1 (quality prediction) of the shared task, focusing on the sentence-level MQM prediction. The techniques we experimented with include the integration of monolingual language models and the pre-finetuning of pre-trained representations. We tried two styles of pre-finetuning, namely Translation Language Modeling and Replaced Token Detection. We demonstrate the competitiveness of our system compared to the widely adopted XLM-RoBERTa baseline. Our system is also the top-ranking system on the Sentence-level MQM Prediction for the English-German language pairs.

Improved Data Augmentation for Translation Suggestion
Hongxiao Zhang | Siyu Lai | Songming Zhang | Hui Huang | Yufeng Chen | Jinan Xu | Jian Liu
Proceedings of the Seventh Conference on Machine Translation (WMT)

Translation suggestion (TS) models are used to automatically provide alternative suggestions for incorrect spans in sentences generated by machine translation. This paper introduces the system used in our submission to the WMT’22 Translation Suggestion shared task. Our system is based on the ensemble of different translation architectures, including Transformer, SA-Transformer, and DynamicConv. We use three strategies to construct synthetic data from parallel corpora to compensate for the lack of supervised data. In addition, we introduce a multi-phase pre-training strategy, adding an additional pre-training phase with in-domain data. We rank second and third on the English-German and English-Chinese bidirectional tasks, respectively.


Saliency-based Multi-View Mixed Language Training for Zero-shot Cross-lingual Classification
Siyu Lai | Hui Huang | Dong Jing | Yufeng Chen | Jinan Xu | Jian Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Recent multilingual pre-trained models, like XLM-RoBERTa (XLM-R), have been demonstrated effective in many cross-lingual tasks. However, there are still gaps between the contextualized representations of similar words in different languages. To solve this problem, we propose a novel framework named Multi-View Mixed Language Training (MVMLT), which leverages code-switched data with multi-view learning to fine-tune XLM-R. MVMLT uses gradient-based saliency to extract keywords which are the most relevant to downstream tasks and replaces them with the corresponding words in the target language dynamically. Furthermore, MVMLT utilizes multi-view learning to encourage contextualized embeddings to align into a more refined language-invariant space. Extensive experiments with four languages show that our model achieves state-of-the-art results on zero-shot cross-lingual sentiment classification and dialogue state tracking tasks, demonstrating the effectiveness of our proposed model.