Hongzhi Liu


2022

pdf
Seeking Patterns, Not just Memorizing Procedures: Contrastive Learning for Solving Math Word Problems
Zhongli Li | Wenxuan Zhang | Chao Yan | Qingyu Zhou | Chao Li | Hongzhi Liu | Yunbo Cao
Findings of the Association for Computational Linguistics: ACL 2022

Math Word Problem (MWP) solving needs to discover the quantitative relationships over natural language narratives. Recent work shows that existing models memorize procedures from context and rely on shallow heuristics to solve MWPs. In this paper, we look at this issue and argue that the cause is a lack of overall understanding of MWP patterns. We first investigate how a neural network understands patterns only from semantics, and observe that, if the prototype equations are the same, most problems get closer representations and those representations apart from them or close to other prototypes tend to produce wrong solutions. Inspired by it, we propose a contrastive learning approach, where the neural network perceives the divergence of patterns. We collect contrastive examples by converting the prototype equation into a tree and seeking similar tree structures. The solving model is trained with an auxiliary objective on the collected examples, resulting in the representations of problems with similar prototypes being pulled closer. We conduct experiments on the Chinese dataset Math23k and the English dataset MathQA. Our method greatly improves the performance in monolingual and multilingual settings.

pdf
AiM: Taking Answers in Mind to Correct Chinese Cloze Tests in Educational Applications
Yusen Zhang | Zhongli Li | Qingyu Zhou | Ziyi Liu | Chao Li | Mina Ma | Yunbo Cao | Hongzhi Liu
Proceedings of the 29th International Conference on Computational Linguistics

To automatically correct handwritten assignments, the traditional approach is to use an OCR model to recognize characters and compare them to answers. The OCR model easily gets confused on recognizing handwritten Chinese characters, and the textual information of the answers is missing during the model inference. However, teachers always have these answers in mind to review and correct assignments. In this paper, we focus on the Chinese cloze tests correction and propose a multimodal approach(named AiM). The encoded representations of answers interact with the visual information of students’ handwriting. Instead of predicting ‘right’ or ‘wrong’, we perform the sequence labeling on the answer text to infer which answer character differs from the handwritten content in a fine-grained way. We take samples of OCR datasets as the positive samples for this task, and develop a negative sample augmentation method to scale up the training data. Experimental results show that AiM outperforms OCR-based methods by a large margin. Extensive studies demonstrate the effectiveness of our multimodal approach.

2019

pdf
Representation Learning with Ordered Relation Paths for Knowledge Graph Completion
Yao Zhu | Hongzhi Liu | Zhonghai Wu | Yang Song | Tao Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

pdf
Data-Anonymous Encoding for Text-to-SQL Generation
Zhen Dong | Shizhao Sun | Hongzhi Liu | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

On text-to-SQL generation, the input utterance usually contains lots of tokens that are related to column names or cells in the table, called table-related tokens. These table-related tokens are troublesome for the downstream neural semantic parser because it brings complex semantics and hinders the sharing across the training examples. However, existing approaches either ignore handling these tokens before the semantic parser or simply use deterministic approaches based on string-match or word embedding similarity. In this work, we propose a more efficient approach to handle table-related tokens before the semantic parser. First, we formulate it as a sequential tagging problem and propose a two-stage anonymization model to learn the semantic relationship between tables and input utterances. Then, we leverage the implicit supervision from SQL queries by policy gradient to guide the training. Experiments demonstrate that our approach consistently improves performances of different neural semantic parsers and significantly outperforms deterministic approaches.