Hongru Wang


2022

pdf
DIGAT: Modeling News Recommendation with Dual-Graph Interaction
Zhiming Mao | Jian Li | Hongru Wang | Xingshan Zeng | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2022

News recommendation (NR) is essential for online news services. Existing NR methods typically adopt a news-user representation learning framework, facing two potential limitations. First, in news encoder, single candidate news encoding suffers from an insufficient semantic information problem. Second, existing graph-based NR methods are promising but lack effective news-user feature interaction, rendering the graph-based recommendation suboptimal. To overcome these limitations, we propose dual-interactive graph attention networks (DIGAT) consisting of news- and user-graph channels. In the news-graph channel, we enrich the semantics of single candidate news by incorporating the semantically relevant news information with a semantic-augmented graph (SAG). In the user-graph channel, multi-level user interests are represented with a news-topic graph. Most notably, we design a dual-graph interaction process to perform effective feature interaction between the news and user graphs, which facilitates accurate news-user representation matching. Experiment results on the benchmark dataset MIND show that DIGAT outperforms existing news recommendation methods. Further ablation studies and analyses validate the effectiveness of (1) semantic-augmented news graph modeling and (2) dual-graph interaction.

pdf
TopicRefine: Joint Topic Prediction and Dialogue Response Generation for Multi-turn End-to-End Dialogue System
Hongru Wang | Mingyu Cui | Zimo Zhou | Kam-Fai Wong
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)

pdf
Prior Omission of Dissimilar Source Domain(s) for Cost-Effective Few-Shot Learning
Zezhong Wang | Hongru Wang | Wai Chung Kwan | Kam-Fai Wong
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)

2020

pdf
CUHK at SemEval-2020 Task 4: CommonSense Explanation, Reasoning and Prediction with Multi-task Learning
Hongru Wang | Xiangru Tang | Sunny Lai | Kwong Sak Leung | Jia Zhu | Gabriel Pui Cheong Fung | Kam-Fai Wong
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our system submitted to task 4 of SemEval 2020: Commonsense Validation and Explanation (ComVE) which consists of three sub-tasks. The task is to directly validate the given sentence whether or not to make sense and require the model to explain it. Based on BERT architecture with the multi-task setting, we propose an effective and interpretable “Explain, Reason and Predict” (ERP) system to solve the three sub-tasks about commonsense: (a) Validation, (b) Reasoning, and (c) Explanation. Inspired by cognitive studies of common sense, our system first generates a reason or understanding of the sentences and then choose which one statement makes sense, which is achieved by multi-task learning. During the post-evaluation, our system has reached 92.9% accuracy in subtask A (rank 11), 89.7% accuracy in subtask B (rank 9), and BLEU score of 12.9 in subtask C (rank 8).