Hongru Liang


2022

pdf
Fact-Tree Reasoning for N-ary Question Answering over Knowledge Graphs
Yao Zhang | Peiyao Li | Hongru Liang | Adam Jatowt | Zhenglu Yang
Findings of the Association for Computational Linguistics: ACL 2022

Current Question Answering over Knowledge Graphs (KGQA) task mainly focuses on performing answer reasoning upon KGs with binary facts. However, it neglects the n-ary facts, which contain more than two entities. In this work, we highlight a more challenging but under-explored task: n-ary KGQA, i.e., answering n-ary facts questions upon n-ary KGs. Nevertheless, the multi-hop reasoning framework popular in binary KGQA task is not directly applicable on n-ary KGQA. We propose two feasible improvements: 1) upgrade the basic reasoning unit from entity or relation to fact, and 2) upgrade the reasoning structure from chain to tree. Therefore, we propose a novel fact-tree reasoning framework, FacTree, which integrates the above two upgrades. FacTree transforms the question into a fact tree and performs iterative fact reasoning on the fact tree to infer the correct answer. Experimental results on the n-ary KGQA dataset we constructed and two binary KGQA benchmarks demonstrate the effectiveness of FacTree compared with state-of-the-art methods.

2021

pdf
GMH: A General Multi-hop Reasoning Model for KG Completion
Yao Zhang | Hongru Liang | Adam Jatowt | Wenqiang Lei | Xin Wei | Ning Jiang | Zhenglu Yang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.

2018

pdf
JTAV: Jointly Learning Social Media Content Representation by Fusing Textual, Acoustic, and Visual Features
Hongru Liang | Haozheng Wang | Jun Wang | Shaodi You | Zhe Sun | Jin-Mao Wei | Zhenglu Yang
Proceedings of the 27th International Conference on Computational Linguistics

Learning social media content is the basis of many real-world applications, including information retrieval and recommendation systems, among others. In contrast with previous works that focus mainly on single modal or bi-modal learning, we propose to learn social media content by fusing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce cross-modal fusion and attentive pooling techniques to integrate multi-modal information comprehensively. Extensive experimental evaluation conducted on real-world datasets demonstrate our proposed model outperforms the state-of-the-art approaches by a large margin.