Hasan Cavusoglu


IndT5: A Text-to-Text Transformer for 10 Indigenous Languages
El Moatez Billah Nagoudi | Wei-Rui Chen | Muhammad Abdul-Mageed | Hasan Cavusoglu
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

Transformer language models have become fundamental components of NLP based pipelines. Although several Transformer have been introduced to serve many languages, there is a shortage of models pre-trained for low-resource and Indigenous languages in particular. In this work, we introduce IndT5, the first Transformer language model for Indigenous languages. To train IndT5, we build IndCorpus, a new corpus for 10 Indigenous languages and Spanish. We also present the application of IndT5 to machine translation by investigating different approaches to translate between Spanish and the Indigenous languages as part of our contribution to the AmericasNLP 2021 Shared Task on Open Machine Translation. IndT5 and IndCorpus are publicly available for research.


Growing Together: Modeling Human Language Learning With n-Best Multi-Checkpoint Machine Translation
El Moatez Billah Nagoudi | Muhammad Abdul-Mageed | Hasan Cavusoglu
Proceedings of the Fourth Workshop on Neural Generation and Translation

We describe our submission to the 2020 Duolingo Shared Task on Simultaneous Translation And Paraphrase for Language Education (STAPLE). We view MT models at various training stages (i.e., checkpoints) as human learners at different levels. Hence, we employ an ensemble of multi-checkpoints from the same model to generate translation sequences with various levels of fluency. From each checkpoint, for our best model, we sample n-Best sequences (n=10) with a beam width =100. We achieve an 37.57 macro F1 with a 6 checkpoint model ensemble on the official shared task test data, outperforming a baseline Amazon translation system of 21.30 macro F1 and ultimately demonstrating the utility of our intuitive method.