Harshita Sharma


HAWP: a Dataset for Hindi Arithmetic Word Problem Solving
Harshita Sharma | Pruthwik Mishra | Dipti Sharma
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Word Problem Solving remains a challenging and interesting task in NLP. A lot of research has been carried out to solve different genres of word problems with various complexity levels in recent years. However, most of the publicly available datasets and work has been carried out for English. Recently there has been a surge in this area of word problem solving in Chinese with the creation of large benchmark datastes. Apart from these two languages, labeled benchmark datasets for low resource languages are very scarce. This is the first attempt to address this issue for any Indian Language, especially Hindi. In this paper, we present HAWP (Hindi Arithmetic Word Problems), a dataset consisting of 2336 arithmetic word problems in Hindi. We also developed baseline systems for solving these word problems. We also propose a new evaluation technique for word problem solvers taking equation equivalence into account.