Haoran Yang


Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation
Haoran Yang | Wai Lam | Piji Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Exemplar-Guided Paraphrase Generation (EGPG) aims to generate a target sentence which conforms to the style of the given exemplar while encapsulating the content information of the source sentence. In this paper, we propose a new method with the goal of learning a better representation of the style and the content. This method is mainly motivated by the recent success of contrastive learning which has demonstrated its power in unsupervised feature extraction tasks. The idea is to design two contrastive losses with respect to the content and the style by considering two problem characteristics during training. One characteristic is that the target sentence shares the same content with the source sentence, and the second characteristic is that the target sentence shares the same style with the exemplar. These two contrastive losses are incorporated into the general encoder-decoder paradigm. Experiments on two datasets, namely QQP-Pos and ParaNMT, demonstrate the effectiveness of our proposed constrastive losses.

Sentence Structure and Word Relationship Modeling for Emphasis Selection
Haoran Yang | Wai Lam
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Emphasis Selection is a newly proposed task which focuses on choosing words for emphasis in short sentences. Traditional methods only consider the sequence information of a sentence while ignoring the rich sentence structure and word relationship information. In this paper, we propose a new framework that considers sentence structure via a sentence structure graph and word relationship via a word similarity graph. The sentence structure graph is derived from the parse tree of a sentence. The word similarity graph allows nodes to share information with their neighbors since we argue that in emphasis selection, similar words are more likely to be emphasized together. Graph neural networks are employed to learn the representation of each node of these two graphs. Experimental results demonstrate that our framework can achieve superior performance.