Haoran Xu


2022

pdf
Por Qué Não Utiliser Alla Språk? Mixed Training with Gradient Optimization in Few-Shot Cross-Lingual Transfer
Haoran Xu | Kenton Murray
Findings of the Association for Computational Linguistics: NAACL 2022

The current state-of-the-art for few-shot cross-lingual transfer learning first trains on abundant labeled data in the source language and then fine-tunes with a few examples on the target language, termed target-adapting. Though this has been demonstrated to work on a variety of tasks, in this paper we show some deficiencies of this approach and propose a one-step mixed training method that trains on both source and target data with stochastic gradient surgery, a novel gradient-level optimization. Unlike the previous studies that focus on one language at a time when target-adapting, we use one model to handle all target languages simultaneously to avoid excessively language-specific models. Moreover, we discuss the unreality of utilizing large target development sets for model selection in previous literature. We further show that our method is both development-free for target languages, and is also able to escape from overfitting issues. We conduct a large-scale experiment on 4 diverse NLP tasks across up to 48 languages. Our proposed method achieves state-of-the-art performance on all tasks and outperforms target-adapting by a large margin, especially for languages that are linguistically distant from the source language, e.g., 7.36% F1 absolute gain on average for the NER task, up to 17.60% on Punjabi.

pdf
The Importance of Being Parameters: An Intra-Distillation Method for Serious Gains
Haoran Xu | Philipp Koehn | Kenton Murray
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent model pruning methods have demonstrated the ability to remove redundant parameters without sacrificing model performance. Common methods remove redundant parameters according to the parameter sensitivity, a gradient-based measure reflecting the contribution of the parameters. In this paper, however, we argue that redundant parameters can be trained to make beneficial contributions. We first highlight the large sensitivity (contribution) gap among high-sensitivity and low-sensitivity parameters and show that the model generalization performance can be significantly improved after balancing the contribution of all parameters. Our goal is to balance the sensitivity of all parameters and encourage all of them to contribute equally. We propose a general task-agnostic method, namely intra-distillation, appended to the regular training loss to balance parameter sensitivity. Moreover, we also design a novel adaptive learning method to control the strength of intra-distillation loss for faster convergence. Our experiments show the strong effectiveness of our methods on machine translation, natural language understanding, and zero-shot cross-lingual transfer across up to 48 languages, e.g., a gain of 3.54 BLEU on average across 8 language pairs from the IWSLT’14 dataset.

2021

pdf
Everything Is All It Takes: A Multipronged Strategy for Zero-Shot Cross-Lingual Information Extraction
Mahsa Yarmohammadi | Shijie Wu | Marc Marone | Haoran Xu | Seth Ebner | Guanghui Qin | Yunmo Chen | Jialiang Guo | Craig Harman | Kenton Murray | Aaron Steven White | Mark Dredze | Benjamin Van Durme
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Zero-shot cross-lingual information extraction (IE) describes the construction of an IE model for some target language, given existing annotations exclusively in some other language, typically English. While the advance of pretrained multilingual encoders suggests an easy optimism of “train on English, run on any language”, we find through a thorough exploration and extension of techniques that a combination of approaches, both new and old, leads to better performance than any one cross-lingual strategy in particular. We explore techniques including data projection and self-training, and how different pretrained encoders impact them. We use English-to-Arabic IE as our initial example, demonstrating strong performance in this setting for event extraction, named entity recognition, part-of-speech tagging, and dependency parsing. We then apply data projection and self-training to three tasks across eight target languages. Because no single set of techniques performs the best across all tasks, we encourage practitioners to explore various configurations of the techniques described in this work when seeking to improve on zero-shot training.

pdf
Adaptive Bridge between Training and Inference for Dialogue Generation
Haoran Xu | Hainan Zhang | Yanyan Zou | Hongshen Chen | Zhuoye Ding | Yanyan Lan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario.In real human dialogue, there are many appropriate responses for the same context, not only with different expressions, but also with different topics. Therefore, due to the much bigger gap between various ground-truth responses and the generated synthetic response, exposure bias is more challenging in dialogue generation task.What’s more, as MLE encourages the model to only learn the common words among different ground-truth responses, but ignores the interesting and specific parts, exposure bias may further lead to the common response generation problem, such as “I don’t know” and “HaHa?” In this paper, we propose a novel adaptive switching mechanism, which learns to automatically transit between ground-truth learning and generated learning regarding the word-level matching score, such as the cosine similarity. Experimental results on both Chinese STC dataset and English Reddit dataset, show that our adaptive method achieves a significant improvement in terms of metric-based evaluation and human evaluation, as compared with the state-of-the-art exposure bias approaches. Further analysis on NMT task also shows that our model can achieve a significant improvement.

pdf
BERT, mBERT, or BiBERT? A Study on Contextualized Embeddings for Neural Machine Translation
Haoran Xu | Benjamin Van Durme | Kenton Murray
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The success of bidirectional encoders using masked language models, such as BERT, on numerous natural language processing tasks has prompted researchers to attempt to incorporate these pre-trained models into neural machine translation (NMT) systems. However, proposed methods for incorporating pre-trained models are non-trivial and mainly focus on BERT, which lacks a comparison of the impact that other pre-trained models may have on translation performance. In this paper, we demonstrate that simply using the output (contextualized embeddings) of a tailored and suitable bilingual pre-trained language model (dubbed BiBERT) as the input of the NMT encoder achieves state-of-the-art translation performance. Moreover, we also propose a stochastic layer selection approach and a concept of a dual-directional translation model to ensure the sufficient utilization of contextualized embeddings. In the case of without using back translation, our best models achieve BLEU scores of 30.45 for En→De and 38.61 for De→En on the IWSLT’14 dataset, and 31.26 for En→De and 34.94 for De→En on the WMT’14 dataset, which exceeds all published numbers.

pdf
Zero-Shot Cross-Lingual Dependency Parsing through Contextual Embedding Transformation
Haoran Xu | Philipp Koehn
Proceedings of the Second Workshop on Domain Adaptation for NLP

Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, where a space transformation is derived by aligning representations of translation pairs that are referred from dictionaries. We move further from this line and investigate a contextual embedding alignment approach which is sense-level and dictionary-free. To enhance the quality of the mapping, we also provide a deep view of properties of contextual embeddings, i.e., the anisotropy problem and its solution. Experiments on zero-shot dependency parsing through the concept-shared space built by our embedding transformation substantially outperform state-of-the-art methods using multilingual embeddings.

pdf
Gradual Fine-Tuning for Low-Resource Domain Adaptation
Haoran Xu | Seth Ebner | Mahsa Yarmohammadi | Aaron Steven White | Benjamin Van Durme | Kenton Murray
Proceedings of the Second Workshop on Domain Adaptation for NLP

Fine-tuning is known to improve NLP models by adapting an initial model trained on more plentiful but less domain-salient examples to data in a target domain. Such domain adaptation is typically done using one stage of fine-tuning. We demonstrate that gradually fine-tuning in a multi-step process can yield substantial further gains and can be applied without modifying the model or learning objective.

pdf
VAE based Text Style Transfer with Pivot Words Enhancement Learning
Haoran Xu | Sixing Lu | Zhongkai Sun | Chengyuan Ma | Chenlei Guo
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

Text Style Transfer (TST) aims to alter the underlying style of the source text to another specific style while keeping the same content. Due to the scarcity of high-quality parallel training data, unsupervised learning has become a trending direction for TST tasks. In this paper, we propose a novel VAE based Text Style Transfer with pivOt Words Enhancement leaRning (VT-STOWER) method which utilizes Variational AutoEncoder (VAE) and external style embeddings to learn semantics and style distribution jointly. Additionally, we introduce pivot words learning, which is applied to learn decisive words for a specific style and thereby further improve the overall performance of the style transfer. The proposed VT-STOWER can be scaled to different TST scenarios given very limited and non-parallel training data with a novel and flexible style strength control mechanism. Experiments demonstrate that the VT-STOWER outperforms the state-of-the-art on sentiment, formality, and code-switching TST tasks.

2020

pdf
Meet Changes with Constancy: Learning Invariance in Multi-Source Translation
Jianfeng Liu | Ling Luo | Xiang Ao | Yan Song | Haoran Xu | Jian Ye
Proceedings of the 28th International Conference on Computational Linguistics

Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one systems. Despite the remarkable success of existing models, they usually neglect the fact that multiple source inputs may have inconsistencies. Such differences might bring noise to the task and limit the performance of existing multi-source NMT approaches due to their indiscriminate usage of input sources for target word predictions. In this paper, we attempt to leverage the potential complementary information among distinct sources and alleviate the occasional conflicts of them. To accomplish that, we propose a source invariance network to learn the invariant information of parallel sources. Such network can be easily integrated with multi-encoder based multi-source NMT methods (e.g. multi-encoder RNN and transformer) to enhance the translation results. Extensive experiments on two multi-source translation tasks demonstrate that the proposed approach not only achieves clear gains in translation quality but also captures implicit invariance between different sources.