Haochen Tan


A Sentence is Worth 128 Pseudo Tokens: A Semantic-Aware Contrastive Learning Framework for Sentence Embeddings
Haochen Tan | Wei Shao | Han Wu | Ke Yang | Linqi Song
Findings of the Association for Computational Linguistics: ACL 2022

Contrastive learning has shown great potential in unsupervised sentence embedding tasks, e.g., SimCSE (CITATION).However, these existing solutions are heavily affected by superficial features like the length of sentences or syntactic structures. In this paper, we propose a semantic-aware contrastive learning framework for sentence embeddings, termed Pseudo-Token BERT (PT-BERT), which is able to explore the pseudo-token space (i.e., latent semantic space) representation of a sentence while eliminating the impact of superficial features such as sentence length and syntax. Specifically, we introduce an additional pseudo token embedding layer independent of the BERT encoder to map each sentence into a sequence of pseudo tokens in a fixed length. Leveraging these pseudo sequences, we are able to construct same-length positive and negative pairs based on the attention mechanism to perform contrastive learning. In addition, we utilize both the gradient-updating and momentum-updating encoders to encode instances while dynamically maintaining an additional queue to store the representation of sentence embeddings, enhancing the encoder’s learning performance for negative examples. Experiments show that our model outperforms the state-of-the-art baselines on six standard semantic textual similarity (STS) tasks. Furthermore, experiments on alignments and uniformity losses, as well as hard examples with different sentence lengths and syntax, consistently verify the effectiveness of our method.

Zero-shot Cross-lingual Conversational Semantic Role Labeling
Han Wu | Haochen Tan | Kun Xu | Shuqi Liu | Lianwei Wu | Linqi Song
Findings of the Association for Computational Linguistics: NAACL 2022

While conversational semantic role labeling (CSRL) has shown its usefulness on Chinese conversational tasks, it is still under-explored in non-Chinese languages due to the lack of multilingual CSRL annotations for the parser training. To avoid expensive data collection and error-propagation of translation-based methods, we present a simple but effective approach to perform zero-shot cross-lingual CSRL.Our model implicitly learns language-agnostic, conversational structure-aware and semantically rich representations with the hierarchical encoders and elaborately designed pre-training objectives. Experimental results show that our model outperforms all baselines by large margins on two newly collected English CSRL test sets. More importantly, we confirm the usefulness of CSRL to non-Chinese conversational tasks such as the question-in-context rewriting task in English and the multi-turn dialogue response generation tasks in English, German and Japanese by incorporating the CSRL information into the downstream conversation-based models. We believe this finding is significant and will facilitate the research of non-Chinese dialogue tasks which suffer the problems of ellipsis and anaphora.


Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Kun Xu | Haochen Tan | Linfeng Song | Han Wu | Haisong Zhang | Linqi Song | Dong Yu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting ride of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focus, which results in inaccurate concentration on some dispensable words. In this paper, we propose to use semantic role labeling (SRL), which highlights the core semantic information of who did what to whom, to provide additional guidance for the rewriter model. Experiments show that this information significantly improves a RoBERTa-based model that already outperforms previous state-of-the-art systems.