Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.
This paper introduces a new task – Chinese address parsing – the task of mapping Chinese addresses into semantically meaningful chunks. While it is possible to model this problem using a conventional sequence labelling approach, our observation is that there exist complex dependencies between labels that cannot be readily captured by a simple linear-chain structure. We investigate neural structured prediction models with latent variables to capture such rich structural information within Chinese addresses. We create and publicly release a new dataset consisting of 15K Chinese addresses, and conduct extensive experiments on the dataset to investigate the model effectiveness and robustness. We release our code and data at http://statnlp.org/research/sp.
This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage into the general encoder-decoder framework. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.
Targeted sentiment analysis is the task of jointly predicting target entities and their associated sentiment information. Existing research efforts mostly regard this joint task as a sequence labeling problem, building models that can capture explicit structures in the output space. However, the importance of capturing implicit global structural information that resides in the input space is largely unexplored. In this work, we argue that both types of information (implicit and explicit structural information) are crucial for building a successful targeted sentiment analysis model. Our experimental results show that properly capturing both information is able to lead to better performance than competitive existing approaches. We also conduct extensive experiments to investigate our model’s effectiveness and robustness.
We report an empirical study on the task of negation scope extraction given the negation cue. Our key observation is that certain useful information such as features related to negation cue, long-distance dependencies as well as some latent structural information can be exploited for such a task. We design approaches based on conditional random fields (CRF), semi-Markov CRF, as well as latent-variable CRF models to capture such information. Extensive experiments on several standard datasets demonstrate that our approaches are able to achieve better results than existing approaches reported in the literature.