Hannah Bast


2022

pdf
ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool
Hannah Bast | Matthias Hertel | Natalie Prange
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We present Elevant, a tool for the fully automatic fine-grained evaluation of a set of entity linkers on a set of benchmarks. Elevant provides an automatic breakdown of the performance by various error categories and by entity type. Elevant also provides a rich and compact, yet very intuitive and self-explanatory visualization of the results of a linker on a benchmark in comparison to the ground truth. A live demo, the link to the complete code base on GitHub and a link to a demo video are provided under https://elevant.cs.uni-freiburg.de .

2021

pdf
Tokenization Repair in the Presence of Spelling Errors
Hannah Bast | Matthias Hertel | Mostafa M. Mohamed
Proceedings of the 25th Conference on Computational Natural Language Learning

We consider the following tokenization repair problem: Given a natural language text with any combination of missing or spurious spaces, correct these. Spelling errors can be present, but it’s not part of the problem to correct them. For example, given: “Tispa per isabout token izaionrep air”, compute “Tis paper is about tokenizaion repair”. We identify three key ingredients of high-quality tokenization repair, all missing from previous work: deep language models with a bidirectional component, training the models on text with spelling errors, and making use of the space information already present. Our methods also improve existing spell checkers by fixing not only more tokenization errors but also more spelling errors: once it is clear which characters form a word, it is much easier for them to figure out the correct word. We provide six benchmarks that cover three use cases (OCR errors, text extraction from PDF, human errors) and the cases of partially correct space information and all spaces missing. We evaluate our methods against the best existing methods and a non-trivial baseline. We provide full reproducibility under https://ad.informatik.uni-freiburg.de/publications.