Current pre-trained models applied for summarization are prone to factual inconsistencies that misrepresent the source text. Evaluating the factual consistency of summaries is thus necessary to develop better models. However, the human evaluation setup for evaluating factual consistency has not been standardized. To determine the factors that affect the reliability of the human evaluation, we crowdsource evaluations for factual consistency across state-of-the-art models on two news summarization datasets using the rating-based Likert Scale and ranking-based Best-Worst Scaling. Our analysis reveals that the ranking-based Best-Worst Scaling offers a more reliable measure of summary quality across datasets and that the reliability of Likert ratings highly depends on the target dataset and the evaluation design. To improve crowdsourcing reliability, we extend the scale of the Likert rating and present a scoring algorithm for Best-Worst Scaling that we call value learning. Our crowdsourcing guidelines will be publicly available to facilitate future work on factual consistency in summarization.
In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.
Summarization of clinical narratives is a long-standing research problem. Here, we introduce the task of hospital-course summarization. Given the documentation authored throughout a patient’s hospitalization, generate a paragraph that tells the story of the patient admission. We construct an English, text-to-text dataset of 109,000 hospitalizations (2M source notes) and their corresponding summary proxy: the clinician-authored “Brief Hospital Course” paragraph written as part of a discharge note. Exploratory analyses reveal that the BHC paragraphs are highly abstractive with some long extracted fragments; are concise yet comprehensive; differ in style and content organization from the source notes; exhibit minimal lexical cohesion; and represent silver-standard references. Our analysis identifies multiple implications for modeling this complex, multi-document summarization task.