Giulia Rambelli


2022

pdf
Compositionality as an Analogical Process: Introducing ANNE
Giulia Rambelli | Emmanuele Chersoni | Philippe Blache | Alessandro Lenci
Proceedings of the Workshop on Cognitive Aspects of the Lexicon

Usage-based constructionist approaches consider language a structured inventory of constructions, form-meaning pairings of different schematicity and complexity, and claim that the more a linguistic pattern is encountered, the more it becomes accessible to speakers. However, when an expression is unavailable, what processes underlie the interpretation? While traditional answers rely on the principle of compositionality, for which the meaning is built word-by-word and incrementally, usage-based theories argue that novel utterances are created based on previously experienced ones through analogy, mapping an existing structural pattern onto a novel instance. Starting from this theoretical perspective, we propose here a computational implementation of these assumptions. As the principle of compositionality has been used to generate distributional representations of phrases, we propose a neural network simulating the construction of phrasal embedding as an analogical process. Our framework, inspired by word2vec and computer vision techniques, was evaluated on tasks of generalization from existing vectors.

2021

pdf bib
Did the Cat Drink the Coffee? Challenging Transformers with Generalized Event Knowledge
Paolo Pedinotti | Giulia Rambelli | Emmanuele Chersoni | Enrico Santus | Alessandro Lenci | Philippe Blache
Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics

Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we take a broader perspective by assessing whether and to what extent computational approaches have access to the information about the typicality of entire events and situations described in language (Generalized Event Knowledge). Given the recent success of Transformers Language Models (TLMs), we decided to test them on a benchmark for the dynamic estimation of thematic fit. The evaluation of these models was performed in comparison with SDM, a framework specifically designed to integrate events in sentence meaning representations, and we conducted a detailed error analysis to investigate which factors affect their behavior. Our results show that TLMs can reach performances that are comparable to those achieved by SDM. However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge, and their predictions often depend on surface linguistic features, such as frequent words, collocations and syntactic patterns, thereby showing sub-optimal generalization abilities.

2020

pdf
Comparing Probabilistic, Distributional and Transformer-Based Models on Logical Metonymy Interpretation
Giulia Rambelli | Emmanuele Chersoni | Alessandro Lenci | Philippe Blache | Chu-Ren Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

In linguistics and cognitive science, Logical metonymies are defined as type clashes between an event-selecting verb and an entity-denoting noun (e.g. The editor finished the article), which are typically interpreted by inferring a hidden event (e.g. reading) on the basis of contextual cues. This paper tackles the problem of logical metonymy interpretation, that is, the retrieval of the covert event via computational methods. We compare different types of models, including the probabilistic and the distributional ones previously introduced in the literature on the topic. For the first time, we also tested on this task some of the recent Transformer-based models, such as BERT, RoBERTa, XLNet, and GPT-2. Our results show a complex scenario, in which the best Transformer-based models and some traditional distributional models perform very similarly. However, the low performance on some of the testing datasets suggests that logical metonymy is still a challenging phenomenon for computational modeling.

2019

pdf
Distributional Semantics Meets Construction Grammar. towards a Unified Usage-Based Model of Grammar and Meaning
Giulia Rambelli | Emmanuele Chersoni | Philippe Blache | Chu-Ren Huang | Alessandro Lenci
Proceedings of the First International Workshop on Designing Meaning Representations

In this paper, we propose a new type of semantic representation of Construction Grammar that combines constructions with the vector representations used in Distributional Semantics. We introduce a new framework, Distributional Construction Grammar, where grammar and meaning are systematically modeled from language use, and finally, we discuss the kind of contributions that distributional models can provide to CxG representation from a linguistic and cognitive perspective.

2017

pdf
UDLex: Towards Cross-language Subcategorization Lexicons
Giulia Rambelli | Alessandro Lenci | Thierry Poibeau
Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017)

2016

pdf
LexFr: Adapting the LexIt Framework to Build a Corpus-based French Subcategorization Lexicon
Giulia Rambelli | Gianluca Lebani | Laurent Prévot | Alessandro Lenci
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

This paper introduces LexFr, a corpus-based French lexical resource built by adapting the framework LexIt, originally developed to describe the combinatorial potential of Italian predicates. As in the original framework, the behavior of a group of target predicates is characterized by a series of syntactic (i.e., subcategorization frames) and semantic (i.e., selectional preferences) statistical information (a.k.a. distributional profiles) whose extraction process is mostly unsupervised. The first release of LexFr includes information for 2,493 verbs, 7,939 nouns and 2,628 adjectives. In these pages we describe the adaptation process and evaluated the final resource by comparing the information collected for 20 test verbs against the information available in a gold standard dictionary. In the best performing setting, we obtained 0.74 precision, 0.66 recall and 0.70 F-measure.

pdf
CogALex-V Shared Task: ROOT18
Emmanuele Chersoni | Giulia Rambelli | Enrico Santus
Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)

In this paper, we describe ROOT 18, a classifier using the scores of several unsupervised distributional measures as features to discriminate between semantically related and unrelated words, and then to classify the related pairs according to their semantic relation (i.e. synonymy, antonymy, hypernymy, part-whole meronymy). Our classifier participated in the CogALex-V Shared Task, showing a solid performance on the first subtask, but a poor performance on the second subtask. The low scores reported on the second subtask suggest that distributional measures are not sufficient to discriminate between multiple semantic relations at once.