Ge Zhang


1Cademy @ Causal News Corpus 2022: Leveraging Self-Training in Causality Classification of Socio-Political Event Data
Adam Nik | Ge Zhang | Xingran Chen | Mingyu Li | Jie Fu
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

This paper details our participation in the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) workshop @ EMNLP 2022, where we take part in Subtask 1 of Shared Task 3 {citep{tan-etal-2022-event}. We approach the given task of event causality detection by proposing a self-training pipeline that follows a teacher-student classifier method. More specifically, we initially train a teacher model on the true, original task data, and use that teacher model to self-label data to be used in the training of a separate student model for the final task prediction. We test how restricting the number of positive or negative self-labeled examples in the self-training process affects classification performance. Our final results show that using self-training produces a comprehensive performance improvement across all models and self-labeled training sets tested within the task of event causality sequence classification. On top of that, we find that self-training performance did not diminish even when restricting either positive/negative examples used in training.Our code is be publicly available at {hyperlink{}{}.

1Cademy @ Causal News Corpus 2022: Enhance Causal Span Detection via Beam-Search-based Position Selector
Xingran Chen | Ge Zhang | Adam Nik | Mingyu Li | Jie Fu
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

In this paper, we present our approach and empirical observations for Cause-Effect Signal Span Detection—Subtask 2 of Shared task 3 at CASE 2022. The shared task aims to extract the cause, effect, and signal spans from a given causal sentence.We model the task as a reading comprehension (RC) problem and apply a token-level RC-based span prediction paradigm to the task as the baseline.We explore different training objectives to fine-tune the model, as well as data augmentation (DA) tricks based on the language model (LM) for performance improvement.Additionally, we propose an efficient beam-search post-processing strategy to due with the drawbacks of span detection to obtain a further performance gain.Our approach achieves an average $F_1$ score of 54.15 and ranks {textbf{$1ˆ{st}$} in the CASE competition. Our code is available at {url{}.

Aligning Generative Language Models with Human Values
Ruibo Liu | Ge Zhang | Xinyu Feng | Soroush Vosoughi
Findings of the Association for Computational Linguistics: NAACL 2022

Although current large-scale generative language models (LMs) can show impressive insights about factual knowledge, they do not exhibit similar success with respect to human values judgements (e.g., whether or not the generations of an LM are moral). Existing methods learn human values either by directly mimicking the behavior of human data, or rigidly constraining the generation space to human-chosen tokens. These methods are inherently limited in that they do not consider the contextual and abstract nature of human values and as a result often fail when dealing with out-of-domain context or sophisticated and abstract human values.This paper proposes SENSEI, a new reinforcement learning based method that can embed human values judgements into each step of language generation. SENSEI deploys an Actor-Critic framework, where the Critic is a reward distributor that simulates the reward assignment procedure of humans, while the Actor guides the generation towards the maximum reward direction. Compared with five existing methods in three human values alignment datasets, SENSEI not only achieves higher alignment performance in terms of both automatic and human evaluations, but also shows improvements on robustness and transfer learning on unseen human values.

HERB: Measuring Hierarchical Regional Bias in Pre-trained Language Models
Yizhi Li | Ge Zhang | Bohao Yang | Chenghua Lin | Anton Ragni | Shi Wang | Jie Fu
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Fairness has become a trending topic in natural language processing (NLP) and covers biases targeting certain social groups such as genders and religions. Yet regional bias, another long-standing global discrimination problem, remains unexplored still. Consequently, we intend to provide a study to analyse the regional bias learned by the pre-trained language models (LMs) that are broadly used in NLP tasks. While verifying the existence of regional bias in LMs, we find that the biases on regional groups can be largely affected by the corresponding geographical clustering. We accordingly propose a hierarchical regional bias evaluation method (HERB) utilising the information from the sub-region clusters to quantify the bias in the pre-trained LMs. Experiments show that our hierarchical metric can effectively evaluate the regional bias with regard to comprehensive topics and measure the potential regional bias that can be propagated to downstream tasks. Our codes are available at

pdf bib
1Cademy at Semeval-2022 Task 1: Investigating the Effectiveness of Multilingual, Multitask, and Language-Agnostic Tricks for the Reverse Dictionary Task
Zhiyong Wang | Ge Zhang | Nineli Lashkarashvili
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our system for the Se- mEval2022 task of matching dictionary glosses to word embeddings. We focus on the Reverse Dictionary Track of the competition, which maps multilingual glosses to reconstructed vector representations. More specifically, models convert the input of sentences to three types of embeddings: SGNS, Char, and Electra. We pro- pose several experiments for applying neural network cells, general multilingual and multi-task structures, and language-agnostic tricks to the task. We also provide comparisons over different types of word embeddings and ablation studies to suggest helpful strategies. Our initial transformer-based model achieves relatively low performance. However, trials on different retokenization methodologies indicate improved performance. Our proposed Elmo- based monolingual model achieves the highest outcome, and its multitask, and multilingual varieties show competitive results as well.