There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts. We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model. We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the F-scores reflect, making it a promising approach for practical applications.
Natural language descriptions of user interface (UI) elements such as alternative text are crucial for accessibility and language-based interaction in general. Yet, these descriptions are constantly missing in mobile UIs. We propose widget captioning, a novel task for automatically generating language descriptions for UI elements from multimodal input including both the image and the structural representations of user interfaces. We collected a large-scale dataset for widget captioning with crowdsourcing. Our dataset contains 162,860 language phrases created by human workers for annotating 61,285 UI elements across 21,750 unique UI screens. We thoroughly analyze the dataset, and train and evaluate a set of deep model configurations to investigate how each feature modality as well as the choice of learning strategies impact the quality of predicted captions. The task formulation and the dataset as well as our benchmark models contribute a solid basis for this novel multimodal captioning task that connects language and user interfaces.
Named Entity Recognition (NER) has been mostly studied in the context of written text. Specifically, NER is an important step in de-identification (de-ID) of medical records, many of which are recorded conversations between a patient and a doctor. In such recordings, audio spans with personal information should be redacted, similar to the redaction of sensitive character spans in de-ID for written text. The application of NER in the context of audio de-identification has yet to be fully investigated. To this end, we define the task of audio de-ID, in which audio spans with entity mentions should be detected. We then present our pipeline for this task, which involves Automatic Speech Recognition (ASR), NER on the transcript text, and text-to-audio alignment. Finally, we introduce a novel metric for audio de-ID and a new evaluation benchmark consisting of a large labeled segment of the Switchboard and Fisher audio datasets and detail our pipeline’s results on it.
Distant supervision has been applied to automatically generate labeled data for biomedical relation extraction. Noise exists in both positively and negatively-labeled data and affects the performance of supervised machine learning methods. In this paper, we propose three novel heuristics based on the notion of proximity, trigger word and confidence of patterns to leverage lexical and syntactic information to reduce the level of noise in the distantly labeled data. Experiments on three different tasks, extraction of protein-protein-interaction, miRNA-gene regulation relation and protein-localization event, show that the proposed methods can improve the F-score over the baseline by 6, 10 and 14 points for the three tasks, respectively. We also show that when the models are configured to output high-confidence results, high precisions can be obtained using the proposed methods, making them promising for facilitating manual curation for databases.
This paper describes the systems used for the MSR+FBK submission for the SLT track of IWSLT 2013. Starting from a baseline system we made a series of iterative and additive improvements, including a novel method for processing bilingual data used to train MT systems for use on ASR output. Our primary submission is a system combination of five individual systems, combining the output of multiple ASR engines with multiple MT techniques. There are two contrastive submissions to help place the combined system in context. We describe the systems used and present results on the test sets.