Encoder-only transformer models have been successfully applied to different table understanding tasks, as in TAPAS. A major limitation of these architectures is that they are constrained to classification-like tasks such as cell selection or entailment detection. We present TabT5, an encoder-decoder model that generates natural language text based on tables and textual inputs. TabT5 overcomes the encoder-only limitation by incorporating a decoder component and leverages the input structure with table specific embeddings and pre-training. TabT5 achieves new state-of-the-art results on several domains, including spreadsheet formula prediction with a 15% increase in sequence accuracy, QA with a 2.5% increase in sequence accuracy and data-to-text generation with a 2.5% increase in BLEU.
Token free approaches have been successfully applied to a series of word and span level tasks. In this work, we evaluate a byte-level sequence to sequence model (ByT5) on the 51 languages in the MASSIVE multilingual semantic parsing dataset. We examine multiple experimental settings: (i) zero-shot, (ii) full gold data and (iii) zero-shot with synthetic data. By leveraging a state-of-the-art label projection method for machine translated examples, we are able to reduce the gap in exact match to only 5 points with respect to a model trained on gold data from all the languages. We additionally provide insights on the cross-lingual transfer of ByT5 and show how the model compares with respect to mT5 across all parameter sizes.
We tackle the problem of weakly-supervised conversational Question Answering over large Knowledge Graphs using a neural semantic parsing approach. We introduce a new Logical Form (LF) grammar that can model a wide range of queries on the graph while remaining sufficiently simple to generate supervision data efficiently. Our Transformer-based model takes a JSON-like structure as input, allowing us to easily incorporate both Knowledge Graph and conversational contexts. This structured input is transformed to lists of embeddings and then fed to standard attention layers. We validate our approach, both in terms of grammar coverage and LF execution accuracy, on two publicly available datasets, CSQA and ConvQuestions, both grounded in Wikidata. On CSQA, our approach increases the coverage from 80% to 96.2%, and the LF execution accuracy from 70.6% to 75.6%, with respect to previous state-of-the-art results. On ConvQuestions, we achieve competitive results with respect to the state-of-the-art.
Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms. However, training semantic parsers from weak supervision poses difficulties, and in addition, the generated logical forms are only used as an intermediate step prior to retrieving the denotation. In this paper, we present TaPas, an approach to question answering over tables without generating logical forms. TaPas trains from weak supervision, and predicts the denotation by selecting table cells and optionally applying a corresponding aggregation operator to such selection. TaPas extends BERT’s architecture to encode tables as input, initializes from an effective joint pre-training of text segments and tables crawled from Wikipedia, and is trained end-to-end. We experiment with three different semantic parsing datasets, and find that TaPas outperforms or rivals semantic parsing models by improving state-of-the-art accuracy on SQA from 55.1 to 67.2 and performing on par with the state-of-the-art on WikiSQL and WikiTQ, but with a simpler model architecture. We additionally find that transfer learning, which is trivial in our setting, from WikiSQL to WikiTQ, yields 48.7 accuracy, 4.2 points above the state-of-the-art.
Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.
We present a novel approach to answering sequential questions based on structured objects such as knowledge bases or tables without using a logical form as an intermediate representation. We encode tables as graphs using a graph neural network model based on the Transformer architecture. The answers are then selected from the encoded graph using a pointer network. This model is appropriate for processing conversations around structured data, where the attention mechanism that selects the answers to a question can also be used to resolve conversational references. We demonstrate the validity of this approach with competitive results on the Sequential Question Answering (SQA) task.
Guided by multiple heuristics, a unified taxonomy of entities and categories is distilled from the Wikipedia category network. A comprehensive evaluation, based on the analysis of upward generalization paths, demonstrates that the taxonomy supports generalizations which are more than twice as accurate as the state of the art. The taxonomy is available at http://headstaxonomy.com.