Despite neural language models qualitatively capturing many human linguistic behaviors, recent work has demonstrated that they underestimate the true processing costs of ungrammatical structures. We extend these more fine-grained comparisons between humans and models by investigating the interaction between Principle B and coreference processing. While humans use Principle B to block certain structural positions from affecting their incremental processing, we find that GPT-based language models are influenced by ungrammatical positions. We conclude by relating the mismatch between neural models and humans to properties of training data and suggest that certain aspects of human processing behavior do not directly follow from linguistic data.
A growing body of literature has focused on detailing the linguistic knowledge embedded in large, pretrained language models. Existing work has shown that non-linguistic biases in models can drive model behavior away from linguistic generalizations. We hypothesized that competing linguistic processes within a language, rather than just non-linguistic model biases, could obscure underlying linguistic knowledge. We tested this claim by exploring a single phenomenon in four languages: English, Chinese, Spanish, and Italian. While human behavior has been found to be similar across languages, we find cross-linguistic variation in model behavior. We show that competing processes in a language act as constraints on model behavior and demonstrate that targeted fine-tuning can re-weight the learned constraints, uncovering otherwise dormant linguistic knowledge in models. Our results suggest that models need to learn both the linguistic constraints in a language and their relative ranking, with mismatches in either producing non-human-like behavior.
Language models (LMs) trained on large quantities of text have been claimed to acquire abstract linguistic representations. Our work tests the robustness of these abstractions by focusing on the ability of LMs to learn interactions between different linguistic representations. In particular, we utilized stimuli from psycholinguistic studies showing that humans can condition reference (i.e. coreference resolution) and syntactic processing on the same discourse structure (implicit causality). We compared both transformer and long short-term memory LMs to find that, contrary to humans, implicit causality only influences LM behavior for reference, not syntax, despite model representations that encode the necessary discourse information. Our results further suggest that LM behavior can contradict not only learned representations of discourse but also syntactic agreement, pointing to shortcomings of standard language modeling.
A standard approach to evaluating language models analyzes how models assign probabilities to valid versus invalid syntactic constructions (i.e. is a grammatical sentence more probable than an ungrammatical sentence). Our work uses ambiguous relative clause attachment to extend such evaluations to cases of multiple simultaneous valid interpretations, where stark grammaticality differences are absent. We compare model performance in English and Spanish to show that non-linguistic biases in RNN LMs advantageously overlap with syntactic structure in English but not Spanish. Thus, English models may appear to acquire human-like syntactic preferences, while models trained on Spanish fail to acquire comparable human-like preferences. We conclude by relating these results to broader concerns about the relationship between comprehension (i.e. typical language model use cases) and production (which generates the training data for language models), suggesting that necessary linguistic biases are not present in the training signal at all.