Florian Kraft


The KIT Lecture Corpus for Speech Translation
Sebastian Stüker | Florian Kraft | Christian Mohr | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Academic lectures offer valuable content, but often do not reach their full potential audience due to the language barrier. Human translations of lectures are too expensive to be widely used. Speech translation technology can be an affordable alternative in this case. State-of-the-art speech translation systems utilize statistical models that need to be trained on large amounts of in-domain data. In order to support the KIT lecture translation project in its effort to introduce speech translation technology in KIT's lecture halls, we have collected a corpus of German lectures at KIT. In this paper we describe how we recorded the lectures and how we annotated them. We further give detailed statistics on the types of lectures in the corpus and its size. We collected the corpus with the purpose in mind that it should not just be suited for training a spoken language translation system the traditional way, but should also enable us to research techniques that enable the translation system to automatically and autonomously adapt itself to the varying topics and speakers of lectures


Speech recognition for machine translation in Quaero
Lori Lamel | Sandrine Courcinous | Julien Despres | Jean-Luc Gauvain | Yvan Josse | Kevin Kilgour | Florian Kraft | Viet-Bac Le | Hermann Ney | Markus Nußbaum-Thom | Ilya Oparin | Tim Schlippe | Ralf Schlüter | Tanja Schultz | Thiago Fraga da Silva | Sebastian Stüker | Martin Sundermeyer | Bianca Vieru | Ngoc Thang Vu | Alexander Waibel | Cécile Woehrling
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes the speech-to-text systems used to provide automatic transcriptions used in the Quaero 2010 evaluation of Machine Translation from speech. Quaero (www.quaero.org) is a large research and industrial innovation program focusing on technologies for automatic analysis and classification of multimedia and multilingual documents. The ASR transcript is the result of a Rover combination of systems from three teams ( KIT, RWTH, LIMSI+VR) for the French and German languages. The casesensitive word error rates (WER) of the combined systems were respectively 20.8% and 18.1% on the 2010 evaluation data, relative WER reductions of 14.6% and 17.4% respectively over the best component system.


Simultaneous German-English lecture translation.
Muntsin Kolss | Matthias Wölfel | Florian Kraft | Jan Niehues | Matthias Paulik | Alex Waibel
Proceedings of the 5th International Workshop on Spoken Language Translation: Papers

In an increasingly globalized world, situations in which people of different native tongues have to communicate with each other become more and more frequent. In many such situations, human interpreters are prohibitively expensive or simply not available. Automatic spoken language translation (SLT), as a cost-effective solution to this dilemma, has received increased attention in recent years. For a broad number of applications, including live SLT of lectures and oral presentations, these automatic systems should ideally operate in real time and with low latency. Large and highly specialized vocabularies as well as strong variations in speaking style – ranging from read speech to free presentations suffering from spontaneous events – make simultaneous SLT of lectures a challenging task. This paper presents our progress in building a simultaneous German-English lecture translation system. We emphasize some of the challenges which are particular to this language pair and propose solutions to tackle some of the problems encountered.