Finale Doshi-Velez


2022

pdf
A Joint Learning Approach for Semi-supervised Neural Topic Modeling
Jeffrey Chiu | Rajat Mittal | Neehal Tumma | Abhishek Sharma | Finale Doshi-Velez
Proceedings of the Sixth Workshop on Structured Prediction for NLP

Topic models are some of the most popular ways to represent textual data in an interpret-able manner. Recently, advances in deep generative models, specifically auto-encoding variational Bayes (AEVB), have led to the introduction of unsupervised neural topic models, which leverage deep generative models as opposed to traditional statistics-based topic models. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi-supervised neural topic model. We find that LI-NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative labels; furthermore, our jointly learned classifier outperforms baseline classifiers in ablation studies.

2021

pdf
Depth-Bounded Statistical PCFG Induction as a Model of Human Grammar Acquisition
Lifeng Jin | Lane Schwartz | Finale Doshi-Velez | Timothy Miller | William Schuler
Computational Linguistics, Volume 47, Issue 1 - March 2021

Abstract This article describes a simple PCFG induction model with a fixed category domain that predicts a large majority of attested constituent boundaries, and predicts labels consistent with nearly half of attested constituent labels on a standard evaluation data set of child-directed speech. The article then explores the idea that the difference between simple grammars exhibited by child learners and fully recursive grammars exhibited by adult learners may be an effect of increasing working memory capacity, where the shallow grammars are constrained images of the recursive grammars. An implementation of these memory bounds as limits on center embedding in a depth-specific transform of a recursive grammar yields a significant improvement over an equivalent but unbounded baseline, suggesting that this arrangement may indeed confer a learning advantage.

2019

pdf
Unsupervised Learning of PCFGs with Normalizing Flow
Lifeng Jin | Finale Doshi-Velez | Timothy Miller | Lane Schwartz | William Schuler
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Unsupervised PCFG inducers hypothesize sets of compact context-free rules as explanations for sentences. PCFG induction not only provides tools for low-resource languages, but also plays an important role in modeling language acquisition (Bannard et al., 2009; Abend et al. 2017). However, current PCFG induction models, using word tokens as input, are unable to incorporate semantics and morphology into induction, and may encounter issues of sparse vocabulary when facing morphologically rich languages. This paper describes a neural PCFG inducer which employs context embeddings (Peters et al., 2018) in a normalizing flow model (Dinh et al., 2015) to extend PCFG induction to use semantic and morphological information. Linguistically motivated sparsity and categorical distance constraints are imposed on the inducer as regularization. Experiments show that the PCFG induction model with normalizing flow produces grammars with state-of-the-art accuracy on a variety of different languages. Ablation further shows a positive effect of normalizing flow, context embeddings and proposed regularizers.

2018

pdf
Unsupervised Grammar Induction with Depth-bounded PCFG
Lifeng Jin | Finale Doshi-Velez | Timothy Miller | William Schuler | Lane Schwartz
Transactions of the Association for Computational Linguistics, Volume 6

There has been recent interest in applying cognitively- or empirically-motivated bounds on recursion depth to limit the search space of grammar induction models (Ponvert et al., 2011; Noji and Johnson, 2016; Shain et al., 2016). This work extends this depth-bounding approach to probabilistic context-free grammar induction (DB-PCFG), which has a smaller parameter space than hierarchical sequence models, and therefore more fully exploits the space reductions of depth-bounding. Results for this model on grammar acquisition from transcribed child-directed speech and newswire text exceed or are competitive with those of other models when evaluated on parse accuracy. Moreover, grammars acquired from this model demonstrate a consistent use of category labels, something which has not been demonstrated by other acquisition models.

pdf
Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction
Lifeng Jin | Finale Doshi-Velez | Timothy Miller | William Schuler | Lane Schwartz
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

There have been several recent attempts to improve the accuracy of grammar induction systems by bounding the recursive complexity of the induction model. Modern depth-bounded grammar inducers have been shown to be more accurate than early unbounded PCFG inducers, but this technique has never been compared against unbounded induction within the same system, in part because most previous depth-bounding models are built around sequence models, the complexity of which grows exponentially with the maximum allowed depth. The present work instead applies depth bounds within a chart-based Bayesian PCFG inducer, where bounding can be switched on and off, and then samples trees with or without bounding. Results show that depth-bounding is indeed significantly effective in limiting the search space of the inducer and thereby increasing accuracy of resulting parsing model, independent of the contribution of modern Bayesian induction techniques. Moreover, parsing results on English, Chinese and German show that this bounded model is able to produce parse trees more accurately than or competitively with state-of-the-art constituency grammar induction models.

2016

pdf
Memory-Bounded Left-Corner Unsupervised Grammar Induction on Child-Directed Input
Cory Shain | William Bryce | Lifeng Jin | Victoria Krakovna | Finale Doshi-Velez | Timothy Miller | William Schuler | Lane Schwartz
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper presents a new memory-bounded left-corner parsing model for unsupervised raw-text syntax induction, using unsupervised hierarchical hidden Markov models (UHHMM). We deploy this algorithm to shed light on the extent to which human language learners can discover hierarchical syntax through distributional statistics alone, by modeling two widely-accepted features of human language acquisition and sentence processing that have not been simultaneously modeled by any existing grammar induction algorithm: (1) a left-corner parsing strategy and (2) limited working memory capacity. To model realistic input to human language learners, we evaluate our system on a corpus of child-directed speech rather than typical newswire corpora. Results beat or closely match those of three competing systems.