Fabian David Schmidt


2022

pdf
Don’t Stop Fine-Tuning: On Training Regimes for Few-Shot Cross-Lingual Transfer with Multilingual Language Models
Fabian David Schmidt | Ivan Vulić | Goran Glavaš
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A large body of recent work highlights the fallacies of zero-shot cross-lingual transfer (ZS-XLT) with large multilingual language models. Namely, their performance varies substantially for different target languages and is the weakest where needed the most: for low-resource languages distant to the source language. One remedy is few-shot transfer (FS-XLT), where leveraging only a few task-annotated instances in the target language(s) may yield sizable performance gains. However, FS-XLT also succumbs to large variation, as models easily overfit to the small datasets. In this work, we present a systematic study focused on a spectrum of FS-XLT fine-tuning regimes, analyzing key properties such as effectiveness, (in)stability, and modularity. We conduct extensive experiments on both higher-level (NLI, paraphrasing) and lower-level tasks (NER, POS), presenting new FS-XLT strategies that yield both improved and more stable FS-XLT across the board. Our findings challenge established FS-XLT methods: e.g., we propose to replace sequential fine-tuning with joint fine-tuning on source and target language instances, offering consistent gains with different number of shots (including resource-rich scenarios). We also show that further gains can be achieved with multi-stage FS-XLT training in which joint multilingual fine-tuning precedes the bilingual source-target specialization.

pdf
SLICER: Sliced Fine-Tuning for Low-Resource Cross-Lingual Transfer for Named Entity Recognition
Fabian David Schmidt | Ivan Vulić | Goran Glavaš
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Large multilingual language models generally demonstrate impressive results in zero-shot cross-lingual transfer, yet often fail to successfully transfer to low-resource languages, even for token-level prediction tasks like named entity recognition (NER). In this work, we introduce a simple yet highly effective approach for improving zero-shot transfer for NER to low-resource languages. We observe that NER fine-tuning in the source language decontextualizes token representations, i.e., tokens increasingly attend to themselves. This increased reliance on token information itself, we hypothesize, triggers a type of overfitting to properties that NE tokens within the source languages share, but are generally not present in NE mentions of target languages. As a remedy, we propose a simple yet very effective sliced fine-tuning for NER (SLICER) that forces stronger token contextualization in the Transformer: we divide the transformed token representations and classifier into disjoint slices that are then independently classified during training. We evaluate SLICER on two standard benchmarks for NER that involve low-resource languages, WikiANN and MasakhaNER, and show that it (i) indeed reduces decontextualization (i.e., extent to which NE tokens attend to themselves), consequently (ii) yielding consistent transfer gains, especially prominent for low-resource target languages distant from the source language.

2019

pdf
SEAGLE: A Platform for Comparative Evaluation of Semantic Encoders for Information Retrieval
Fabian David Schmidt | Markus Dietsche | Simone Paolo Ponzetto | Goran Glavaš
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

We introduce Seagle, a platform for comparative evaluation of semantic text encoding models on information retrieval (IR) tasks. Seagle implements (1) word embedding aggregators, which represent texts as algebraic aggregations of pretrained word embeddings and (2) pretrained semantic encoders, and allows for their comparative evaluation on arbitrary (monolingual and cross-lingual) IR collections. We benchmark Seagle’s models on monolingual document retrieval and cross-lingual sentence retrieval. Seagle functionality can be exploited via an easy-to-use web interface and its modular backend (micro-service architecture) can easily be extended with additional semantic search models.