This paper describes our two-stage system for the Euphemism Detection shared task hosted by the 3rd Workshop on Figurative Language Processing in conjunction with EMNLP 2022. Euphemisms tone down expressions about sensitive or unpleasant issues like addiction and death. The ambiguous nature of euphemistic words or expressions makes it challenging to detect their actual meaning within a context. In the first stage, we seek to mitigate this ambiguity by incorporating literal descriptions into input text prompts to our baseline model. It turns out that this kind of direct supervision yields remarkable performance improvement. In the second stage, we integrate visual supervision into our system using visual imageries, two sets of images generated by a text-to-image model by taking terms and descriptions as input. Our experiments demonstrate that visual supervision also gives a statistically significant performance boost. Our system achieved the second place with an F1 score of 87.2%, only about 0.9% worse than the best submission.
Humans are able to perceive, understand and reason about causal events. Developing models with similar physical and causal understanding capabilities is a long-standing goal of artificial intelligence. As a step towards this direction, we introduce CRAFT, a new video question answering dataset that requires causal reasoning about physical forces and object interactions. It contains 58K video and question pairs that are generated from 10K videos from 20 different virtual environments, containing various objects in motion that interact with each other and the scene. Two question categories in CRAFT include previously studied descriptive and counterfactual questions. Additionally, inspired by the Force Dynamics Theory in cognitive linguistics, we introduce a new causal question category that involves understanding the causal interactions between objects through notions like cause, enable, and prevent. Our results show that even though the questions in CRAFT are easy for humans, the tested baseline models, including existing state-of-the-art methods, do not yet deal with the challenges posed in our benchmark.
Pre-trained language models have been shown to improve performance in many natural language tasks substantially. Although the early focus of such models was single language pre-training, recent advances have resulted in cross-lingual and visual pre-training methods. In this paper, we combine these two approaches to learn visually-grounded cross-lingual representations. Specifically, we extend the translation language modelling (Lample and Conneau, 2019) with masked region classification and perform pre-training with three-way parallel vision & language corpora. We show that when fine-tuned for multimodal machine translation, these models obtain state-of-the-art performance. We also provide qualitative insights into the usefulness of the learned grounded representations.
This paper addresses the problem of comprehending procedural commonsense knowledge. This is a challenging task as it requires identifying key entities, keeping track of their state changes, and understanding temporal and causal relations. Contrary to most of the previous work, in this study, we do not rely on strong inductive bias and explore the question of how multimodality can be exploited to provide a complementary semantic signal. Towards this end, we introduce a new entity-aware neural comprehension model augmented with external relational memory units. Our model learns to dynamically update entity states in relation to each other while reading the text instructions. Our experimental analysis on the visual reasoning tasks in the recently proposed RecipeQA dataset reveals that our approach improves the accuracy of the previously reported models by a large margin. Moreover, we find that our model learns effective dynamic representations of entities even though we do not use any supervision at the level of entity states.
Understanding and reasoning about cooking recipes is a fruitful research direction towards enabling machines to interpret procedural text. In this work, we introduce RecipeQA, a dataset for multimodal comprehension of cooking recipes. It comprises of approximately 20K instructional recipes with multiple modalities such as titles, descriptions and aligned set of images. With over 36K automatically generated question-answer pairs, we design a set of comprehension and reasoning tasks that require joint understanding of images and text, capturing the temporal flow of events and making sense of procedural knowledge. Our preliminary results indicate that RecipeQA will serve as a challenging test bed and an ideal benchmark for evaluating machine comprehension systems. The data and leaderboard are available at http://hucvl.github.io/recipeqa.
The task of generating natural language descriptions from images has received a lot of attention in recent years. Consequently, it is becoming increasingly important to evaluate such image captioning approaches in an automatic manner. In this paper, we provide an in-depth evaluation of the existing image captioning metrics through a series of carefully designed experiments. Moreover, we explore the utilization of the recently proposed Word Mover’s Distance (WMD) document metric for the purpose of image captioning. Our findings outline the differences and/or similarities between metrics and their relative robustness by means of extensive correlation, accuracy and distraction based evaluations. Our results also demonstrate that WMD provides strong advantages over other metrics.